工業(yè)設(shè)備的預(yù)測性維護(hù)的市場需求顯而易見。但是預(yù)防性維護(hù)想要產(chǎn)生大的業(yè)務(wù)價(jià)值、真正大規(guī)模發(fā)展卻是遇到了兩個(gè)難題。首先項(xiàng)目實(shí)施成本過高,硬件設(shè)備大多依賴進(jìn)口。這導(dǎo)致很多企業(yè)在考慮投入產(chǎn)出比時(shí)比較猶豫。其次是技術(shù)需要突破,目前大多數(shù)供應(yīng)商只實(shí)現(xiàn)了設(shè)備狀態(tài)的監(jiān)視,真正能實(shí)現(xiàn)故障準(zhǔn)確預(yù)測的落地案例寥寥無幾。供應(yīng)商技術(shù)和能力還需要不斷升級。預(yù)防性維護(hù)要想實(shí)現(xiàn)更好的應(yīng)用,要在以下方面實(shí)現(xiàn)突破。實(shí)現(xiàn)基于預(yù)測的維護(hù),提升故障診斷及預(yù)測的準(zhǔn)確率提高軟硬件產(chǎn)品國產(chǎn)化率,降低實(shí)施成本.電機(jī)監(jiān)測系統(tǒng)可以識別處于初期階段的機(jī)械和液壓故障,從而制定更為合理的輔助維護(hù)計(jì)劃。南通發(fā)動機(jī)監(jiān)測技術(shù)
傳統(tǒng)維護(hù)模式中的故障后維護(hù)與定期維護(hù)將影響生產(chǎn)效率與產(chǎn)品質(zhì)量,并大幅提高制造商的成本。隨著物聯(lián)網(wǎng)、大數(shù)據(jù)、云計(jì)算、機(jī)器學(xué)習(xí)與傳感器等技術(shù)的成熟,預(yù)測性維護(hù)技術(shù)應(yīng)運(yùn)而生。以各類如電機(jī)、軸承等設(shè)備為例,目前已發(fā)展到較為成熟的在線持續(xù)監(jiān)測階段,來實(shí)現(xiàn)查看設(shè)備是否需要維護(hù)、怎么安排維護(hù)時(shí)間來減少計(jì)劃性停產(chǎn)等,并能夠快速、有效的通過物聯(lián)網(wǎng)接入到整個(gè)網(wǎng)絡(luò),將數(shù)據(jù)回傳至管理中心,來實(shí)現(xiàn)電機(jī)設(shè)備的預(yù)測性維護(hù)。電動機(jī)是機(jī)械加工中不可或缺的必備工具,電動機(jī)在運(yùn)轉(zhuǎn)中常產(chǎn)生各種故障,為保證電動機(jī)運(yùn)行安全,對電動機(jī)運(yùn)行狀態(tài)進(jìn)行在線監(jiān)測尤為重要。
以三相異步電動機(jī)為研究對象,采用傳感器獲取電動機(jī)運(yùn)行中的重要參數(shù)(振動、噪聲、轉(zhuǎn)速及溫度等),由時(shí)/頻域分析及能量分析等方法提取電動機(jī)運(yùn)行特征量,構(gòu)成特征向量,采用BP神經(jīng)網(wǎng)絡(luò)訓(xùn)練的方法建立狀態(tài)識別模型,通過BP神經(jīng)網(wǎng)絡(luò)模式識別方法,判斷電動機(jī)運(yùn)行的狀態(tài),在此基礎(chǔ)上,利用LabVIEW軟件構(gòu)建可視化監(jiān)測系統(tǒng),將電動機(jī)運(yùn)行參數(shù)及狀態(tài)實(shí)時(shí)顯示在可視化界面中,完成在線智能監(jiān)測。 上海設(shè)備監(jiān)測在監(jiān)測過程中,我們需要密切關(guān)注數(shù)據(jù)的變化情況。
故障預(yù)測與健康管理是以工業(yè)監(jiān)測數(shù)據(jù)為基礎(chǔ),通過高等數(shù)學(xué)、數(shù)學(xué)優(yōu)化、統(tǒng)計(jì)概率、信號處理、機(jī)器學(xué)習(xí)和統(tǒng)計(jì)學(xué)習(xí)等技術(shù)搭建模型算法,**終實(shí)現(xiàn)產(chǎn)品和裝備的狀態(tài)監(jiān)測、故障診斷及壽命預(yù)測,為產(chǎn)品和裝備的正常運(yùn)行保駕護(hù)航,從而提高其安全性和可靠性。故障預(yù)測與健康管理是以工業(yè)監(jiān)測數(shù)據(jù)為基礎(chǔ),通過高等數(shù)學(xué)、數(shù)學(xué)優(yōu)化、統(tǒng)計(jì)概率、信號處理、機(jī)器學(xué)習(xí)和統(tǒng)計(jì)學(xué)習(xí)等技術(shù)搭建模型算法,實(shí)現(xiàn)產(chǎn)品和裝備的狀態(tài)監(jiān)測、故障診斷及壽命預(yù)測,為產(chǎn)品和裝備的正常運(yùn)行保駕護(hù)航,從而提高其安全性和可靠性。近年來我們提出的標(biāo)準(zhǔn)化平方包絡(luò)和數(shù)學(xué)框架以及準(zhǔn)算數(shù)均值比數(shù)學(xué)框架指引了稀疏測度構(gòu)造的新方向,同時(shí)發(fā)現(xiàn)了大量與基尼指數(shù)、峭度等具有等價(jià)性能的稀疏測度?;跇?biāo)準(zhǔn)化平方包絡(luò)和數(shù)學(xué)框架以及凸優(yōu)化技術(shù),提出了在線更新模型權(quán)重可解釋的機(jī)器學(xué)習(xí)算法,
可以利用模型權(quán)重來實(shí)時(shí)確認(rèn)故障特征頻率,解決了狀態(tài)監(jiān)測與故障診斷領(lǐng)域傳統(tǒng)機(jī)器學(xué)習(xí)只能輸出狀態(tài),而無法提供故障特征來確認(rèn)輸出狀態(tài)的難題。
現(xiàn)代化生產(chǎn)企業(yè)為了極大限度地提高生產(chǎn)水平和經(jīng)濟(jì)效益,不斷地向規(guī)?;透呒夹g(shù)技術(shù)含量發(fā)展,因此生產(chǎn)裝置趨向大型化、高速高效化、自動化和連續(xù)化,人們對設(shè)備的要求不僅是性能好,效率高,還要求在運(yùn)行過程中少出故障,否則因故障停機(jī)帶來的損失是十分巨大的。國內(nèi)外化工、石化、電力、鋼鐵和航空等部門,從許多大型設(shè)備故障和事故中逐漸認(rèn)識到開展設(shè)備故障診斷的重要性。管理好用好這些大型設(shè)備,使其安全、可靠地運(yùn)行,成為設(shè)備管理中的突出任務(wù)。對于單機(jī)連續(xù)運(yùn)行的生產(chǎn)設(shè)備,停機(jī)損失巨大的大型機(jī)組和重大設(shè)備,不宜解體檢查的高精度設(shè)備以及發(fā)生故障后會引起公害的設(shè)備。傳統(tǒng)事后維修和定期維修帶來的過剩維修或失修,使維修費(fèi)用在生產(chǎn)成本中所占比重很大。狀態(tài)監(jiān)測維修是在設(shè)備運(yùn)行時(shí),對它的各個(gè)主要部位產(chǎn)生的物理化學(xué)信號進(jìn)行狀態(tài)監(jiān)測,掌握設(shè)備的技術(shù)狀態(tài),對將要形成或已經(jīng)形成的故障進(jìn)行分析診斷,判定設(shè)備的劣化程度和部位,在故障產(chǎn)生前制訂預(yù)知性維修計(jì)劃,確定設(shè)備維修的內(nèi)容和時(shí)間。因此狀態(tài)監(jiān)測維修既能經(jīng)常保持設(shè)備的完好狀態(tài),又能充分利用零部位的使用壽命,從而延長大修間隔,縮短大修時(shí)間,減少故障停機(jī)損失。監(jiān)測工作需要關(guān)注市場的變化和趨勢,以及時(shí)調(diào)整經(jīng)營策略。
故障診斷可以使系統(tǒng)在一定工作環(huán)境下根據(jù)狀態(tài)監(jiān)測系統(tǒng)提供的信息來查明導(dǎo)致系統(tǒng)某種功能失調(diào)的原因或性質(zhì),判斷劣化發(fā)生的部位或部件,以及預(yù)測狀態(tài)劣化的發(fā)展趨勢等。
電機(jī)故障診斷的基本方法主要有:1、電氣分析法,通過頻譜等信號分析方法對負(fù)載電流的波形進(jìn)行檢測從而診斷出電機(jī)設(shè)備故障的原因和程度;檢測局部放電信號;對比外部施加脈沖信號的響應(yīng)和標(biāo)準(zhǔn)響應(yīng)等;2、絕緣診斷法,利用各種電氣試驗(yàn)裝置和診斷技術(shù)對電機(jī)設(shè)備的絕緣結(jié)構(gòu)和參數(shù)、工作性能是否存在缺陷做出判斷,并對絕緣壽命做出預(yù)測;3、溫度檢測方法,采用各種溫度測量方法對電機(jī)設(shè)備各個(gè)部位的溫升進(jìn)行監(jiān)測,電機(jī)的溫升與各種故障現(xiàn)象相關(guān);4、振動與噪聲診斷法,通過對電機(jī)設(shè)備振動與噪聲的檢測,并對獲取的信號進(jìn)行處理,診斷出電機(jī)產(chǎn)生故障的原因和部位,尤其是對機(jī)械上的損壞診斷特別有效。5、化學(xué)診斷的方法,可以檢測到絕緣材料和潤滑油劣化后的分解物以及一些軸承、密封件的磨損碎屑,通過對比其中一些化學(xué)成分的含量,可以判斷相關(guān)部位元件的破壞程度。 基于人工智能算法的新型的電機(jī)故障預(yù)測系統(tǒng),適用范圍廣,能在更多的工業(yè)場合應(yīng)用。研發(fā)監(jiān)測臺
監(jiān)測結(jié)果的對比可以幫助我們評估不同渠道的效果和效益。南通發(fā)動機(jī)監(jiān)測技術(shù)
基于交流電機(jī)的特征量:通過故障機(jī)理分析可知,交流電機(jī)運(yùn)行過程中,其故障與否必然表現(xiàn)為一些特征參量的變化,根據(jù)診斷需要,選擇有代表性的特征參量為該設(shè)備在線監(jiān)測的被測信號,準(zhǔn)確地提取這些故障特征量,這是故障診斷的關(guān)鍵。故障特征量,特別是反映早期故障征兆的信號往往比較弱,而相應(yīng)的背景噪聲比較弱,常規(guī)的監(jiān)測方法,因受傳感器的準(zhǔn)確性、微處理器的速度、A/D轉(zhuǎn)換的分辨率與轉(zhuǎn)換速度等硬件條件的限制,以及一般的數(shù)據(jù)處理方式的不足,很難滿足提取這些特征量的要求,需要采用一些特殊的電工測量手段與信號處理方法。例如小波變換原理的應(yīng)用。電機(jī)故障的現(xiàn)代分析方法:基于信號變換的診斷方法電機(jī)設(shè)備的許多故障信息是以調(diào)制的形式存在于所監(jiān)測的電氣信號及振動信號之中,如果借助于某種變換對這些信號進(jìn)行解調(diào)處理,就能方便地獲得故障特征信息,以確定電機(jī)設(shè)備所發(fā)生的故障類型。常用的信號變換方法有希爾伯特變換和小波變換等。南通發(fā)動機(jī)監(jiān)測技術(shù)