無錫減振監(jiān)測(cè)數(shù)據(jù)

來源: 發(fā)布時(shí)間:2023-11-14

在預(yù)防性維護(hù)的應(yīng)用中,振動(dòng)是大型旋轉(zhuǎn)等設(shè)備即將發(fā)生故障的重要指標(biāo),一是在大型旋轉(zhuǎn)機(jī)械設(shè)備的所有故障中,振動(dòng)問題出現(xiàn)的概率比較高;另一方面,振動(dòng)信號(hào)包含了豐富的機(jī)械及運(yùn)行的狀態(tài)信息;第三,振動(dòng)信號(hào)易于拾取,便于在不影響機(jī)械運(yùn)行的情況下實(shí)行在線監(jiān)測(cè)和診斷。旋轉(zhuǎn)類設(shè)備的預(yù)防性維護(hù)需要重點(diǎn)監(jiān)控振動(dòng)量變化。其預(yù)測(cè)性診斷技術(shù)對(duì)于制造業(yè)、風(fēng)電等的行業(yè)的運(yùn)維具有非常重大的意義。通過設(shè)備振動(dòng)等狀態(tài)的預(yù)測(cè)性維護(hù),可以及時(shí)發(fā)現(xiàn)并解決系統(tǒng)及零部件存在問題。但是對(duì)于一些不是因?yàn)樵O(shè)備問題而存在的固有振動(dòng),振動(dòng)強(qiáng)度不必要增加會(huì)對(duì)部件產(chǎn)生有害的力,危及設(shè)備的使用壽命和質(zhì)量。在這種情況下,則需要采用振動(dòng)隔離技術(shù)來解決和干預(yù),有效抑制振動(dòng)和噪聲的危害,避免設(shè)備故障和流程關(guān)閉。工業(yè)監(jiān)測(cè)數(shù)據(jù)可以為生產(chǎn)調(diào)整提供科學(xué)依據(jù)。無錫減振監(jiān)測(cè)數(shù)據(jù)

無錫減振監(jiān)測(cè)數(shù)據(jù),監(jiān)測(cè)

目前設(shè)備狀態(tài)監(jiān)測(cè)及故障預(yù)警若干關(guān)鍵技術(shù)可歸納如下:(1)揭示設(shè)備運(yùn)行狀態(tài)機(jī)械動(dòng)態(tài)特性劣化演變規(guī)律。設(shè)備由非故障運(yùn)行狀態(tài)劣化為故障運(yùn)行狀態(tài),其機(jī)械動(dòng)態(tài)特性通常有一個(gè)發(fā)展演變過程(2)提取設(shè)備運(yùn)行狀態(tài)發(fā)展趨勢(shì)特征。在役設(shè)備往往具有復(fù)雜運(yùn)行狀態(tài),在長(zhǎng)歷程運(yùn)行中工況和負(fù)載等非故障因素會(huì)造成信號(hào)能量變化,故障趨勢(shì)信息往往被非故障變化信息淹沒,需較大程度上消除非故障變化造成冗余信息,進(jìn)而構(gòu)建預(yù)測(cè)模型。動(dòng)力裝備全壽命周期監(jiān)測(cè)診斷方面:實(shí)現(xiàn)了支持物聯(lián)網(wǎng)的智能信息采集與管理、全生命周期動(dòng)態(tài)自適應(yīng)監(jiān)測(cè)、早期非線性故障特征提取。優(yōu)化重構(gòu)出綜合體現(xiàn)裝備運(yùn)行工況及表現(xiàn)的新參數(shù),提高異常狀態(tài)辨識(shí)的適應(yīng)性與可靠性,基于運(yùn)行過程信息反映裝備劣化趨勢(shì)與故障發(fā)展規(guī)律,來提高故障早期辨識(shí)能力。基于物聯(lián)網(wǎng)和網(wǎng)絡(luò)化監(jiān)測(cè)診斷將產(chǎn)品監(jiān)測(cè)診斷與運(yùn)行服務(wù)支持有機(jī)集成一體,在應(yīng)用中實(shí)現(xiàn)動(dòng)力裝備常見故障診斷準(zhǔn)確率達(dá)80%以上??蓱?yīng)用于風(fēng)力大電機(jī)、空壓機(jī)、氮壓機(jī)等大型動(dòng)力裝備的集群化診斷領(lǐng)域。提供了基于物聯(lián)網(wǎng)的動(dòng)力裝備全生命周期監(jiān)測(cè)與服務(wù)支持創(chuàng)新模式,提供了其生命周期的遠(yuǎn)程監(jiān)測(cè)診斷與維護(hù)等專業(yè)化服務(wù)。無錫動(dòng)力設(shè)備監(jiān)測(cè)系統(tǒng)供應(yīng)商監(jiān)測(cè)結(jié)果的反饋可以幫助我們改進(jìn)產(chǎn)品的包裝和宣傳策略。

無錫減振監(jiān)測(cè)數(shù)據(jù),監(jiān)測(cè)

在預(yù)防性維護(hù)的應(yīng)用中,振動(dòng)是大型旋轉(zhuǎn)等設(shè)備即將發(fā)生故障的重要指標(biāo),一是在大型旋轉(zhuǎn)機(jī)械設(shè)備的所有故障中,振動(dòng)問題出現(xiàn)的概率比較高;第二,振動(dòng)信號(hào)包含了豐富的機(jī)械及運(yùn)行的狀態(tài)信息;第三,振動(dòng)信號(hào)易于拾取,便于在不影響機(jī)械運(yùn)行的情況下實(shí)行在線監(jiān)測(cè)和診斷。旋轉(zhuǎn)類設(shè)備的預(yù)防性維護(hù)需要重點(diǎn)監(jiān)控振動(dòng)量的變化。其預(yù)測(cè)性診斷技術(shù)對(duì)于制造業(yè)、風(fēng)電等的行業(yè)的運(yùn)維具有非常重大的意義。通過設(shè)備振動(dòng)等狀態(tài)的預(yù)測(cè)性維護(hù),可以及時(shí)發(fā)現(xiàn)并解決系統(tǒng)及零部件存在問題。但是對(duì)于一些不是因?yàn)樵O(shè)備問題而存在的固有振動(dòng),振動(dòng)強(qiáng)度的不必要增加會(huì)對(duì)部件產(chǎn)生有害的力,危及設(shè)備的使用壽命和質(zhì)量。在這種情況下,則需要采用振動(dòng)隔離技術(shù)來解決和干預(yù),有效抑制振動(dòng)和噪聲的危害,避免設(shè)備故障和流程關(guān)閉。

電機(jī)故障診斷可以使系統(tǒng)在一定工作環(huán)境下根據(jù)狀態(tài)監(jiān)測(cè)系統(tǒng)提供的信息來查明導(dǎo)致系統(tǒng)某種功能失調(diào)的原因或性質(zhì),判斷劣化發(fā)生的部位或部件,以及預(yù)測(cè)狀態(tài)劣化的發(fā)展趨勢(shì)等。電機(jī)故障診斷的基本方法主要有:1、電氣分析法,通過頻譜等信號(hào)分析方法對(duì)負(fù)載電流的波形進(jìn)行檢測(cè)從而診斷出電機(jī)設(shè)備故障的原因和程度;檢測(cè)局部放電信號(hào);對(duì)比外部施加脈沖信號(hào)的響應(yīng)和標(biāo)準(zhǔn)響應(yīng)等;2、絕緣診斷法,利用各種電氣試驗(yàn)裝置和診斷技術(shù)對(duì)電機(jī)設(shè)備的絕緣結(jié)構(gòu)和參數(shù)、工作性能是否存在缺陷做出判斷,并對(duì)絕緣壽命做出預(yù)測(cè);3、溫度檢測(cè)方法,采用各種溫度測(cè)量方法對(duì)電機(jī)設(shè)備各個(gè)部位的溫升進(jìn)行監(jiān)測(cè),電機(jī)的溫升與各種故障現(xiàn)象相關(guān);4、振動(dòng)與噪聲診斷法,通過對(duì)電機(jī)設(shè)備振動(dòng)與噪聲的檢測(cè),并對(duì)獲取的信號(hào)進(jìn)行處理,診斷出電機(jī)產(chǎn)生故障的原因和部位,尤其是對(duì)機(jī)械上的損壞診斷特別有效。5、化學(xué)診斷的方法,可以檢測(cè)到絕緣材料和潤(rùn)滑油劣化后的分解物以及一些軸承、密封件的磨損碎屑,通過對(duì)比其中一些化學(xué)成分的含量,可以判斷相關(guān)部位元件的破壞程度。監(jiān)測(cè)工作需要關(guān)注品牌形象和聲譽(yù),以及時(shí)采取措施維護(hù)企業(yè)形象。

無錫減振監(jiān)測(cè)數(shù)據(jù),監(jiān)測(cè)

電機(jī)狀態(tài)監(jiān)測(cè)故障診斷技術(shù)是一種了解和掌握電機(jī)在使用過程中的狀態(tài),確定其整體或局部正?;虍惓#缙诎l(fā)現(xiàn)故障及其原因,并能預(yù)報(bào)故障發(fā)展趨勢(shì)的技術(shù),電機(jī)狀態(tài)監(jiān)測(cè)與故障診斷技術(shù)包括識(shí)別電機(jī)狀態(tài)監(jiān)測(cè)和預(yù)測(cè)發(fā)展趨勢(shì)兩方面。設(shè)備狀態(tài)是指設(shè)備運(yùn)行的工況,由設(shè)備運(yùn)行過程中的各種性能參數(shù)以及設(shè)備運(yùn)行過程中產(chǎn)生的二次效應(yīng)參數(shù)和產(chǎn)品質(zhì)量指標(biāo)參數(shù)來描述。設(shè)備狀態(tài)的類型包括:正常、異常和故障三種。設(shè)備狀態(tài)監(jiān)測(cè)是通過測(cè)定以上參數(shù),并進(jìn)行分析處理,根據(jù)分析處理結(jié)果判定設(shè)備狀態(tài)。對(duì)設(shè)備進(jìn)行定期或連續(xù)監(jiān)測(cè),包括采用各種測(cè)試、分析判別方法,結(jié)合設(shè)備的歷史狀況和運(yùn)行條件,弄清設(shè)備的客觀狀態(tài),獲取設(shè)備性能發(fā)展的趨勢(shì)規(guī)律,為設(shè)備的性能評(píng)價(jià)、合理使用、安全運(yùn)行、故障診斷及設(shè)備自動(dòng)控制打下基礎(chǔ)。工業(yè)噪聲的監(jiān)測(cè)檢測(cè)可以減少對(duì)工人聽力的損害,提高工作效率和生活質(zhì)量。上海研發(fā)監(jiān)測(cè)控制策略

監(jiān)測(cè)工作需要關(guān)注供應(yīng)鏈的運(yùn)作情況,以確保產(chǎn)品的供應(yīng)和質(zhì)量。無錫減振監(jiān)測(cè)數(shù)據(jù)

針對(duì)刀具磨損狀態(tài)在實(shí)際生產(chǎn)加工過程中難以在線監(jiān)測(cè)這一問題,提出一種通過通信技術(shù)獲取機(jī)床內(nèi)部數(shù)據(jù),對(duì)當(dāng)前的刀具磨損狀態(tài)進(jìn)行識(shí)別的方法。通過采集機(jī)床內(nèi)部實(shí)時(shí)數(shù)據(jù)并將其與實(shí)際加工情景緊密結(jié)合,能直接反映當(dāng)前加工狀態(tài)。將卷積神經(jīng)網(wǎng)絡(luò)用于構(gòu)建刀具磨損狀態(tài)識(shí)別模型,直接將采集到的數(shù)據(jù)作為輸入,得到了和傳統(tǒng)方法精度近似的預(yù)測(cè)模型,模型在訓(xùn)練集和在線驗(yàn)證試驗(yàn)中的表現(xiàn)都符合預(yù)期。刀具磨損狀態(tài)識(shí)別的方法在投入使用時(shí)還有一些問題有待解決:①現(xiàn)有數(shù)據(jù)是在相同的加工條件下測(cè)得的,而實(shí)際加工過程中,加工參數(shù)以及加工情景是不斷變化的,因此需要在下一步的研究中,進(jìn)行變參數(shù)試驗(yàn),考慮加工參數(shù)對(duì)于刀具磨損的影響,并針對(duì)常用的一些加工場(chǎng)景,建立不同的模型庫(kù)。變換加工場(chǎng)景時(shí),通過獲取當(dāng)前場(chǎng)景,及時(shí)匹配相應(yīng)的預(yù)測(cè)模型即可。②本研究中的模型是一個(gè)固定的模型。今后需要根據(jù)實(shí)時(shí)的信號(hào)以及已知的磨損狀態(tài),對(duì)模型進(jìn)行實(shí)時(shí)更新,從而在實(shí)時(shí)監(jiān)測(cè)過程中實(shí)現(xiàn)自學(xué)習(xí),不斷提升模型的精度和預(yù)測(cè)效果。無錫減振監(jiān)測(cè)數(shù)據(jù)