基于人工神經網絡的診斷方法簡單處理單元連接而成的復雜的非線性系統(tǒng),具有學習能力,自適應能力,非線性逼近能力等。故障診斷的任務從映射角度看就是從征兆到故障類型的映射。用ANN技術處理故障診斷問題,不僅能進行復雜故障診斷模式的識別,還能進行故障嚴重性評估和故障預測,由于ANN能自動獲取診斷知識,使診斷系統(tǒng)具有自適應能力?;诩尚椭悄芟到y(tǒng)的診斷方法隨著電機設備系統(tǒng)越來越復雜,依靠單一的故障診斷技術已難滿足復雜電機設備的故障診斷要求,因此上述各種診斷技術集成起來形成的集成智能診斷系統(tǒng)成為當前電機設備故障診斷研究的熱點。主要的集成技術有:基于規(guī)則的系統(tǒng)與ANN的結合,模糊邏輯與ANN的結合,混沌理論與ANN的結合,模糊神經網絡與系統(tǒng)的結合。監(jiān)測結果的準確性對于決策的制定至關重要。無錫減振監(jiān)測介紹
柴油機狀態(tài)監(jiān)測與故障診斷系統(tǒng)是一個集數(shù)據(jù)采集與分析、狀態(tài)監(jiān)測、故障診斷為一體的多任務處理系統(tǒng),可實現(xiàn)柴油機監(jiān)測、保護、分析、診斷等功能。包括數(shù)據(jù)采集與工況監(jiān)測、活塞缸套磨損監(jiān)測分析、主軸承磨損狀態(tài)監(jiān)測分析、氣閥間隙異常監(jiān)測分析和瞬時轉速監(jiān)測分析等各種功能。信號分析、特征提取及診斷原理是每個監(jiān)測診斷子功能部分,各子功能都有相應的信號分析與特征提取方法,包括信號預處理、時域、頻域分析、小波分析等,自動形成反映柴油機運行狀態(tài)的特征量,為系統(tǒng)的診斷推理提供信息來源。采用模糊聚類理論來檢驗特征參量的有效性、建立故障標準征兆群,并運用模糊貼近度來實施故障類型的診斷識別?;谌斯ど窠浘W絡的診斷方法簡單處理單元連接而成的復雜的非線性系統(tǒng),具有學習能力,自適應能力,非線性逼近能力等。故障診斷的任務從映射角度看就是從征兆到故障類型的映射。用ANN技術處理故障診斷問題,不僅能進行復雜故障診斷模式的識別,還能進行故障嚴重性評估和故障預測,由于ANN能自動獲取診斷知識,使診斷系統(tǒng)具有自適應能力。無錫減振監(jiān)測介紹監(jiān)測結果的分析可以幫助我們了解產品的優(yōu)勢和不足之處。
狀態(tài)監(jiān)測就是給機器體檢,故障診斷就是給機器看病。醫(yī)生給病人看病,首先是進行體征檢查,例如先查體溫,再進行驗血、X光、心電圖、B超、甚至CT等各種理化檢驗,然后根據(jù)檢查結果和病史,利用醫(yī)生的知識及經驗,對病情做出診斷。對機器故障的診斷,類似于醫(yī)生看病,首先對機器的狀態(tài)進行監(jiān)測,例如先看振動值,再進行頻譜、波形、軸心軌跡、趨勢、波德圖等各種檢測分析,然后結合設備的原理、結構、歷史狀況等,利用專業(yè)人員的知識及經驗,對故障進行綜合分析判斷。1滾動軸承故障振動的診斷方法異步電動機的常見故障主要可以分為定子故障、轉子故障及軸承故障。其中軸承故障占70%以上,如果我們有辦法對軸承情況能實時進行監(jiān)測,那么異步電動機故障率會**減低。滾動軸承狀態(tài)監(jiān)測和故障診斷的方法有多種,例如振動分析法、油液分析法(磁性法、鐵譜法、光譜法)、聲發(fā)射分析法、光纖診斷法等。各種方法都有自己的特點,其中振動分析法以其實用和相對簡單方便,應用*為**,以下*介紹振動信號分析法。滾動軸承不同于其它機械零件,其振動信號的頻率范圍很寬,信噪比很低,信號傳遞路途上的衰減量大,因此,提取它的振動特征信息必須采用一些特殊的檢測技術和處理方法。
故障預測與健康管理是以工業(yè)監(jiān)測數(shù)據(jù)為基礎,通過高等數(shù)學、數(shù)學優(yōu)化、統(tǒng)計概率、信號處理、機器學習和統(tǒng)計學習等技術搭建模型算法,**終實現(xiàn)產品和裝備的狀態(tài)監(jiān)測、故障診斷及壽命預測,為產品和裝備的正常運行保駕護航,從而提高其安全性和可靠性。故障預測與健康管理是以工業(yè)監(jiān)測數(shù)據(jù)為基礎,通過高等數(shù)學、數(shù)學優(yōu)化、統(tǒng)計概率、信號處理、機器學習和統(tǒng)計學習等技術搭建模型算法,實現(xiàn)產品和裝備的狀態(tài)監(jiān)測、故障診斷及壽命預測,為產品和裝備的正常運行保駕護航,從而提高其安全性和可靠性。近年來我們提出的標準化平方包絡和數(shù)學框架以及準算數(shù)均值比數(shù)學框架指引了稀疏測度構造的新方向,同時發(fā)現(xiàn)了大量與基尼指數(shù)、峭度等具有等價性能的稀疏測度?;跇藴驶椒桨j和數(shù)學框架以及凸優(yōu)化技術,提出了在線更新模型權重可解釋的機器學習算法,
可以利用模型權重來實時確認故障特征頻率,解決了狀態(tài)監(jiān)測與故障診斷領域傳統(tǒng)機器學習只能輸出狀態(tài),而無法提供故障特征來確認輸出狀態(tài)的難題。 工業(yè)監(jiān)測系統(tǒng)可以預測設備的故障并提前進行維修。
隨著科技發(fā)展, 各類工程設備的工作和運行環(huán)境變得越來越復雜. 作為機械設備的關鍵零部件, 滾動軸承在長期大載荷、強沖擊等復雜工況下, 極易產生各種故障, 導致機械工作狀況惡化. 針對軸承的故障預測與健康管理技術應運而生. 若能在故障發(fā)生初期即進行準確、可靠的檢測和診斷, 則有助于進行及時維修, 避免嚴重事故的發(fā)生. 早期故障檢測已成為PHM的關鍵技術環(huán)節(jié)之一. 近年來, 隨著傳感技術和機器學習技術的快速發(fā)展, 數(shù)據(jù)驅動的智能化故障檢測和診斷技術受到關注. 如何利用歷史采集的狀態(tài)監(jiān)控數(shù)據(jù)、提高目標軸承早期故障檢測結果的準確性和穩(wěn)定性成為研究熱點和難點, 具有明確的學術價值和應用需求.本文關注的是不停機情況下的早期故障在線檢測問題. 這種方式有助于實時評估軸承工作狀態(tài), 避免因等待停機檢查而產生延誤、造成經濟損失, 因此對早期故障的在線檢測越來越受到工業(yè)界的重視。監(jiān)測工作需要關注市場的人口結構和消費習慣,以了解市場需求的變化。嘉興狀態(tài)監(jiān)測臺
監(jiān)測結果的反饋可以幫助我們改進產品的設計和功能。無錫減振監(jiān)測介紹
電力系統(tǒng)中發(fā)電機的單機容量越大型發(fā)電機在電力生產中處于主力位置,同時大型發(fā)電機由于造價昂貴,結構復雜,一旦遭受損壞,需要的檢修期長,因此要求有極高的運行可靠性。就我國目前和今后很長一段時間內的缺電、用電緊張的狀況而言,發(fā)電機的年運行小時數(shù)目和滿負荷率都較以往高出很多,備用容量很少的情況下,其運行可靠性顯得尤為重要和突出。因此對大型機組進行在線監(jiān)測與診斷,做到早期預警以防止事故的發(fā)生或擴大具有重要的現(xiàn)實意義。通常對發(fā)電機的“監(jiān)測”與“診斷”在內容上并無明確的劃分界限,可以說監(jiān)測的數(shù)據(jù)和結果即為診斷的依據(jù)。監(jiān)測利用各種傳感器在電機運行時對電機的狀態(tài)提取相關數(shù)據(jù)。故障診斷使用計算機及其相應智能軟件,根據(jù)傳感器提供的信息,對故障進行分類定位,確定故障的嚴重程度并提出處理意見。因此狀態(tài)監(jiān)測和故障診斷是一項工作的兩個部分,前者是后者的基礎,后者是前者的分析與綜合。電機狀態(tài)監(jiān)測技術可幫助運行維護人員擺脫被動檢修和不太理想的定期檢修的困境,按照設備內部實際的運行狀況,合理的安排檢修工作,實現(xiàn)所謂“預知”維修。這樣既可避免由于設備突然損壞,停止運行帶來的損失,又可充分發(fā)揮設備的作用。無錫減振監(jiān)測介紹