南通性能監(jiān)測(cè)特點(diǎn)

來源: 發(fā)布時(shí)間:2023-12-12

基于數(shù)據(jù)的故障檢測(cè)與診斷方法能夠?qū)A抗I(yè)數(shù)據(jù)進(jìn)行統(tǒng)計(jì)分析和特征提取,將系統(tǒng)的狀態(tài)分為正常運(yùn)行狀態(tài)和故障狀態(tài),可視為模式識(shí)別任務(wù)。故障檢測(cè)是判斷系統(tǒng)是否處于預(yù)期的正常運(yùn)行狀態(tài),判斷系統(tǒng)是否發(fā)生異常故障,相當(dāng)于一個(gè)二分類任務(wù)。故障診斷是在確定發(fā)生故障的時(shí)候判斷系統(tǒng)處于哪一種故障狀態(tài),相當(dāng)于一個(gè)多分類任務(wù)。因此,故障檢測(cè)和診斷技術(shù)的研究類似于模式識(shí)別,分為4個(gè)的步驟:數(shù)據(jù)獲取、特征提取、特征選擇和特征分類。1)數(shù)據(jù)獲取步驟是從過程系統(tǒng)收集可能影響過程狀態(tài)的信號(hào),包括溫度、流量等過程變量;2)特征提取步驟是將采集的原始信號(hào)映射為有辨識(shí)度的狀態(tài)信息;3)特征選擇步驟是將與狀態(tài)變化相關(guān)的變量提取出來;4)特征分類步驟是通過算法將前幾步中選擇的特征進(jìn)行故障檢測(cè)與診斷。在大數(shù)據(jù)這一背景下,傳統(tǒng)的基于數(shù)據(jù)的故障檢測(cè)與診斷方法被廣泛應(yīng)用,但是,這些方法有一些共同的缺點(diǎn):特征提取需要大量的知識(shí)和信號(hào)處理技術(shù),并且對(duì)于不同的任務(wù),沒有統(tǒng)一的程序來完成。此外,常規(guī)的基于機(jī)器學(xué)習(xí)的方法結(jié)構(gòu)較淺,在提取信號(hào)的高維非線性關(guān)系方面能力有限。工業(yè)監(jiān)測(cè)數(shù)據(jù)可以為生產(chǎn)調(diào)整提供科學(xué)依據(jù)。南通性能監(jiān)測(cè)特點(diǎn)

南通性能監(jiān)測(cè)特點(diǎn),監(jiān)測(cè)

電機(jī)監(jiān)測(cè)是對(duì)電機(jī)運(yùn)行狀態(tài)進(jìn)行實(shí)時(shí)監(jiān)測(cè)和分析的過程。通過監(jiān)測(cè)電機(jī)的電流、電壓、轉(zhuǎn)速等參數(shù),可以了解電機(jī)的工作狀態(tài)和性能表現(xiàn)。電機(jī)監(jiān)測(cè)可以幫助及時(shí)發(fā)現(xiàn)電機(jī)故障或異常情況,并采取相應(yīng)的措施進(jìn)行修復(fù)或調(diào)整,以確保電機(jī)的安全運(yùn)行和高效工作。電機(jī)監(jiān)測(cè)還可以提供有關(guān)電機(jī)的運(yùn)行數(shù)據(jù)和報(bào)告,為電機(jī)維護(hù)和管理提供參考依據(jù)。通過電機(jī)監(jiān)測(cè),可以提高電機(jī)的可靠性和壽命,減少停機(jī)時(shí)間和維修成本。此外,電機(jī)監(jiān)測(cè)還可以優(yōu)化電機(jī)的運(yùn)行效率和能耗,提高能源利用效率。在現(xiàn)代工業(yè)生產(chǎn)中,電機(jī)監(jiān)測(cè)已經(jīng)成為不可或缺的環(huán)節(jié),對(duì)于提高生產(chǎn)效率和質(zhì)量具有重要意義。寧波減振監(jiān)測(cè)數(shù)據(jù)工業(yè)廢氣排放的監(jiān)測(cè)檢測(cè)對(duì)于環(huán)境保護(hù)至關(guān)重要,只有達(dá)到國(guó)家標(biāo)準(zhǔn)才能減少對(duì)環(huán)境的污染。

南通性能監(jiān)測(cè)特點(diǎn),監(jiān)測(cè)

針對(duì)刀具磨損狀態(tài)在實(shí)際生產(chǎn)加工過程中難以在線監(jiān)測(cè)這一問題,提出一種通過通信技術(shù)獲取機(jī)床內(nèi)部數(shù)據(jù),對(duì)當(dāng)前的刀具磨損狀態(tài)進(jìn)行識(shí)別的方法。通過采集機(jī)床內(nèi)部實(shí)時(shí)數(shù)據(jù)并將其與實(shí)際加工情景緊密結(jié)合,能直接反映當(dāng)前的加工狀態(tài)。將卷積神經(jīng)網(wǎng)絡(luò)用于構(gòu)建刀具磨損狀態(tài)識(shí)別模型,直接將采集到數(shù)據(jù)作為輸入,得到了和傳統(tǒng)方法精度近似的預(yù)測(cè)模型,模型在訓(xùn)練集和在線驗(yàn)證試驗(yàn)中的表現(xiàn)都符合預(yù)期。刀具磨損狀態(tài)識(shí)別的方法在投入使用時(shí)還有一些問題有待解決:①現(xiàn)有數(shù)據(jù)是在相同的加工條件下測(cè)得的,而實(shí)際加工過程中,加工參數(shù)以及加工情景是不斷變化的,因此需要在下一步的研究中,進(jìn)行變參數(shù)試驗(yàn),考慮加工參數(shù)對(duì)于刀具磨損的影響,并針對(duì)常用的一些加工場(chǎng)景,建立不同的模型庫(kù)。變換加工場(chǎng)景時(shí),通過獲取當(dāng)前場(chǎng)景,及時(shí)匹配相應(yīng)的預(yù)測(cè)模型即可。②本研究中的模型是一個(gè)固定的模型。今后需要根據(jù)實(shí)時(shí)的信號(hào)以及已知的磨損狀態(tài),對(duì)模型進(jìn)行實(shí)時(shí)更新,從而在實(shí)時(shí)監(jiān)測(cè)過程中實(shí)現(xiàn)自學(xué)習(xí),不斷提升模型的精度和預(yù)測(cè)效果。

柴油機(jī)狀態(tài)監(jiān)測(cè)與故障診斷系統(tǒng)是一個(gè)集數(shù)據(jù)采集與分析、狀態(tài)監(jiān)測(cè)、故障診斷為一體的多任務(wù)處理系統(tǒng),可實(shí)現(xiàn)柴油機(jī)監(jiān)測(cè)、保護(hù)、分析、診斷等功能。包括數(shù)據(jù)采集與工況監(jiān)測(cè)、活塞缸套磨損監(jiān)測(cè)分析、主軸承磨損狀態(tài)監(jiān)測(cè)分析、氣閥間隙異常監(jiān)測(cè)分析和瞬時(shí)轉(zhuǎn)速監(jiān)測(cè)分析等各種功能。信號(hào)分析、特征提取及診斷原理是每個(gè)監(jiān)測(cè)診斷子功能部分,各子功能都有相應(yīng)的信號(hào)分析與特征提取方法,包括信號(hào)預(yù)處理、時(shí)域、頻域分析、小波分析等,自動(dòng)形成反映柴油機(jī)運(yùn)行狀態(tài)的特征量,為系統(tǒng)的診斷推理提供信息來源。采用模糊聚類理論來檢驗(yàn)特征參量的有效性、建立故障標(biāo)準(zhǔn)征兆群,并運(yùn)用模糊貼近度來實(shí)施故障類型的診斷識(shí)別?;谌斯ど窠?jīng)網(wǎng)絡(luò)的診斷方法簡(jiǎn)單處理單元連接而成的復(fù)雜的非線性系統(tǒng),具有學(xué)習(xí)能力,自適應(yīng)能力,非線性逼近能力等。故障診斷的任務(wù)從映射角度看就是從征兆到故障類型的映射。用ANN技術(shù)處理故障診斷問題,不僅能進(jìn)行復(fù)雜故障診斷模式的識(shí)別,還能進(jìn)行故障嚴(yán)重性評(píng)估和故障預(yù)測(cè),由于ANN能自動(dòng)獲取診斷知識(shí),使診斷系統(tǒng)具有自適應(yīng)能力。監(jiān)測(cè)結(jié)果的分析可以幫助我們了解市場(chǎng)的潛在機(jī)會(huì)和風(fēng)險(xiǎn)。

南通性能監(jiān)測(cè)特點(diǎn),監(jiān)測(cè)

傳統(tǒng)維護(hù)模式中的故障后維護(hù)與定期維護(hù)將影響生產(chǎn)效率與產(chǎn)品質(zhì)量,并大幅提高制造商的成本。隨著物聯(lián)網(wǎng)、大數(shù)據(jù)、云計(jì)算、機(jī)器學(xué)習(xí)與傳感器等技術(shù)的成熟,預(yù)測(cè)性維護(hù)技術(shù)應(yīng)運(yùn)而生。以各類如電機(jī)、軸承等設(shè)備為例,目前已發(fā)展到較為成熟的在線持續(xù)監(jiān)測(cè)階段,來實(shí)現(xiàn)查看設(shè)備是否需要維護(hù)、安排維護(hù)時(shí)間來減少計(jì)劃性停產(chǎn)等,并能夠快速、有效的通過物聯(lián)網(wǎng)接入到整個(gè)網(wǎng)絡(luò),將數(shù)據(jù)回傳至管理中心,來實(shí)現(xiàn)電機(jī)設(shè)備的預(yù)測(cè)性維護(hù)。電動(dòng)機(jī)是機(jī)械加工中不可或缺的必備工具,電動(dòng)機(jī)在運(yùn)轉(zhuǎn)中常產(chǎn)生各種故障,為保證電動(dòng)機(jī)運(yùn)行安全,對(duì)電動(dòng)機(jī)運(yùn)行狀態(tài)進(jìn)行在線監(jiān)測(cè)尤為重要。以三相異步電動(dòng)機(jī)為研究對(duì)象,采用傳感器獲取電動(dòng)機(jī)運(yùn)行中的重要參數(shù)(振動(dòng)、噪聲、轉(zhuǎn)速及溫度等),由時(shí)/頻域分析及能量分析等方法提取電動(dòng)機(jī)運(yùn)行特征量,構(gòu)成特征向量,采用BP神經(jīng)網(wǎng)絡(luò)訓(xùn)練的方法建立狀態(tài)識(shí)別模型,通過BP神經(jīng)網(wǎng)絡(luò)模式識(shí)別方法,判斷電動(dòng)機(jī)運(yùn)行的狀態(tài),在此基礎(chǔ)上,利用LabVIEW軟件構(gòu)建可視化監(jiān)測(cè)系統(tǒng),將電動(dòng)機(jī)運(yùn)行參數(shù)及狀態(tài)實(shí)時(shí)顯示在可視化界面中,完成在線智能監(jiān)測(cè)。監(jiān)測(cè)工作需要關(guān)注社交媒體的輿情和用戶評(píng)論,以了解消費(fèi)者的意見和反饋。溫州減振監(jiān)測(cè)系統(tǒng)

工業(yè)人員安全的監(jiān)測(cè)檢測(cè)是保障工人生命安全的必要措施,可以預(yù)防事故的發(fā)生。南通性能監(jiān)測(cè)特點(diǎn)

針對(duì)刀具磨損狀態(tài)在實(shí)際生產(chǎn)加工過程中難以在線監(jiān)測(cè)這一問題,提出一種通過通信技術(shù)獲取機(jī)床內(nèi)部數(shù)據(jù),對(duì)當(dāng)前的刀具磨損狀態(tài)進(jìn)行識(shí)別的方法。通過采集機(jī)床內(nèi)部實(shí)時(shí)數(shù)據(jù)并將其與實(shí)際加工情景緊密結(jié)合,能直接反映當(dāng)前的加工狀態(tài)。將卷積神經(jīng)網(wǎng)絡(luò)用于構(gòu)建刀具磨損狀態(tài)識(shí)別模型,直接將采集到的數(shù)據(jù)作為輸入,得到了和傳統(tǒng)方法精度近似的預(yù)測(cè)模型,模型在訓(xùn)練集和在線驗(yàn)證試驗(yàn)中的表現(xiàn)都符合預(yù)期。刀具磨損狀態(tài)識(shí)別的方法在投入使用時(shí)還有一些問題有待解決:①現(xiàn)有數(shù)據(jù)是在相同的加工條件下測(cè)得的,而實(shí)際加工過程中,加工參數(shù)以及加工情景是不斷變化的,因此需要在下一步的研究中,進(jìn)行變參數(shù)試驗(yàn),考慮加工參數(shù)對(duì)于刀具磨損的影響,并針對(duì)常用的一些加工場(chǎng)景,建立不同的模型庫(kù)。變換加工場(chǎng)景,通過獲取當(dāng)前場(chǎng)景,及時(shí)匹配相應(yīng)的預(yù)測(cè)模型即可。②本研究中的模型是一個(gè)固定的模型。今后需要根據(jù)實(shí)時(shí)的信號(hào)以及已知的磨損狀態(tài),對(duì)模型進(jìn)行實(shí)時(shí)更新,從而在實(shí)時(shí)監(jiān)測(cè)過程中實(shí)現(xiàn)自學(xué)習(xí),不斷提升模型的精度和預(yù)測(cè)效果。南通性能監(jiān)測(cè)特點(diǎn)