無錫芯軟智控科技有限公司榮獲無錫市專精特新中小企業(yè)榮譽(yù)
又一家上市公司“精工科技”選擇芯軟云“
智能排產(chǎn)功能在MES管理系統(tǒng)中有哪些應(yīng)用
心芯相連·共京能年|2024年芯軟智控企業(yè)年會(huì)網(wǎng)滿舉行
無錫芯軟智控科技有限公司榮獲無錫市專精特新中小企業(yè)榮譽(yù)
又一家上市公司“精工科技“選擇芯軟云!
新誠(chéng)物業(yè)&芯軟智控:一封表?yè)P(yáng)信,一面錦旗,是對(duì)芯軟智控的滿分
心芯相連·共京能年|2024年芯軟智控企業(yè)年會(huì)網(wǎng)滿舉行
無錫芯軟智控科技有限公司榮獲無錫市專精特新中小企業(yè)榮譽(yù)
了解MES生產(chǎn)管理系統(tǒng)的作用及優(yōu)勢(shì)?
設(shè)備狀態(tài)監(jiān)測(cè)和故障診斷技術(shù)是設(shè)備維護(hù)手段之一。設(shè)備的故障監(jiān)測(cè)診斷技術(shù),就是利用科學(xué)的檢測(cè)方法和現(xiàn)代化技術(shù)手段,對(duì)設(shè)備目前的運(yùn)行狀態(tài)進(jìn)行監(jiān)測(cè)和排查,從而判斷出設(shè)備運(yùn)行狀態(tài)的可靠性,確認(rèn)其局部或整機(jī)是否正常運(yùn)行。煤礦用機(jī)電設(shè)備溫度振動(dòng)監(jiān)測(cè)系統(tǒng)用于煤礦主扇、壓風(fēng)機(jī)、鋼絲繩牽引帶式輸送機(jī)、滾筒帶式輸送機(jī)、排水泵和電動(dòng)機(jī)、提升機(jī)等,有助于掌握設(shè)備運(yùn)行工況中的溫度振動(dòng)數(shù)據(jù)。提升機(jī)、鋼絲繩牽引、滾筒帶式輸送機(jī)、皮帶機(jī)、空壓機(jī)、壓風(fēng)機(jī)、水泵等煤礦機(jī)電設(shè)備要求增加電動(dòng)機(jī)及主要軸承溫度和振動(dòng)監(jiān)測(cè)。裝置功能:1、提升機(jī)、水泵、皮帶機(jī)等設(shè)備電動(dòng)機(jī)主軸承溫度振動(dòng)在線監(jiān)測(cè)2、礦用高壓異步電動(dòng)機(jī)軸承溫度振動(dòng)檢測(cè)診斷3、提升機(jī)、水泵、皮帶機(jī)等設(shè)備滾筒主軸承溫度振動(dòng)在線監(jiān)測(cè)4、井下大型機(jī)電設(shè)備電動(dòng)機(jī)及主要軸承溫度振動(dòng)在線監(jiān)測(cè)5、可以同時(shí)收集電機(jī)前后軸承溫度及電機(jī)振動(dòng)量的數(shù)值,對(duì)收到的信息分析處理6、系統(tǒng)提供網(wǎng)絡(luò)接口,可直接與智能礦山網(wǎng)絡(luò)相連,也可與其它網(wǎng)絡(luò)內(nèi)的系統(tǒng)連接;7、在線系統(tǒng)軟件可實(shí)時(shí)監(jiān)測(cè)任意通道頻譜,時(shí)域波形、趨勢(shì)、三維譜圖和坐標(biāo)圖,還可通過互聯(lián)網(wǎng)進(jìn)行遠(yuǎn)程監(jiān)測(cè)。監(jiān)測(cè)結(jié)果的比較可以幫助我們?cè)u(píng)估不同營(yíng)銷活動(dòng)的效果和效益。杭州仿真監(jiān)測(cè)方案
狀態(tài)監(jiān)測(cè)就是給機(jī)器體檢,故障診斷就是給機(jī)器看病。醫(yī)生給病人看病,首先是進(jìn)行體征檢查,例如先查體溫,再進(jìn)行驗(yàn)血、X光、心電圖、B超、甚至CT等各種理化檢驗(yàn),然后根據(jù)檢查結(jié)果和病史,利用醫(yī)生的知識(shí)及經(jīng)驗(yàn),對(duì)病情做出診斷。對(duì)機(jī)器故障的診斷,類似于醫(yī)生看病,首先對(duì)機(jī)器的狀態(tài)進(jìn)行監(jiān)測(cè),例如先看振動(dòng)值,再進(jìn)行頻譜、波形、軸心軌跡、趨勢(shì)、波德圖等各種檢測(cè)分析,然后結(jié)合設(shè)備的原理、結(jié)構(gòu)、歷史狀況等,利用專業(yè)人員的知識(shí)及經(jīng)驗(yàn),對(duì)故障進(jìn)行綜合分析判斷。1滾動(dòng)軸承故障振動(dòng)的診斷方法異步電動(dòng)機(jī)的常見故障主要可以分為定子故障、轉(zhuǎn)子故障及軸承故障。其中軸承故障占70%以上,如果我們有辦法對(duì)軸承情況能實(shí)時(shí)進(jìn)行監(jiān)測(cè),那么異步電動(dòng)機(jī)故障率會(huì)**減低。滾動(dòng)軸承狀態(tài)監(jiān)測(cè)和故障診斷的方法有多種,例如振動(dòng)分析法、油液分析法(磁性法、鐵譜法、光譜法)、聲發(fā)射分析法、光纖診斷法等。各種方法都有自己的特點(diǎn),其中振動(dòng)分析法以其實(shí)用和相對(duì)簡(jiǎn)單方便,應(yīng)用*為**,以下*介紹振動(dòng)信號(hào)分析法。滾動(dòng)軸承不同于其它機(jī)械零件,其振動(dòng)信號(hào)的頻率范圍很寬,信噪比很低,信號(hào)傳遞路途上的衰減量大,因此,提取它的振動(dòng)特征信息必須采用一些特殊的檢測(cè)技術(shù)和處理方法。南通旋轉(zhuǎn)機(jī)械監(jiān)測(cè)價(jià)格監(jiān)測(cè)結(jié)果的比較可以幫助我們?cè)u(píng)估不同地區(qū)的市場(chǎng)需求和潛力。
生產(chǎn)企業(yè)為了極大限度地提高生產(chǎn)水平和經(jīng)濟(jì)效益,不斷地向規(guī)模化和高技術(shù)技術(shù)含量發(fā)展,因此生產(chǎn)裝置趨向大型化、高速高效化、自動(dòng)化和連續(xù)化,人們對(duì)設(shè)備的要求不僅是性能好,效率高,還要求在運(yùn)行過程中少出故障,否則因故障停機(jī)帶來的損失是十分巨大的。國(guó)內(nèi)外化工、石化、電力、鋼鐵和航空等部門,從許多大型設(shè)備故障和事故中逐漸認(rèn)識(shí)到開展設(shè)備故障診斷的重要性。管理好用好這些大型設(shè)備,使其安全、可靠地運(yùn)行,成為設(shè)備管理中的突出任務(wù)。對(duì)于單機(jī)連續(xù)運(yùn)行的生產(chǎn)設(shè)備,停機(jī)損失巨大的大型機(jī)組和重大設(shè)備,不宜解體檢查的高精度設(shè)備以及發(fā)生故障后會(huì)引起公害的設(shè)備。傳統(tǒng)事后維修和定期維修帶來的過剩維修或失修,使維修費(fèi)用在生產(chǎn)成本中所占比重很大。狀態(tài)監(jiān)測(cè)維修是在設(shè)備運(yùn)行時(shí),對(duì)它的各個(gè)主要部位產(chǎn)生的物理化學(xué)信號(hào)進(jìn)行狀態(tài)監(jiān)測(cè),掌握設(shè)備的技術(shù)狀態(tài),對(duì)將要形成或已經(jīng)形成的故障進(jìn)行分析診斷,判定設(shè)備的劣化程度和部位,在故障產(chǎn)生前制訂預(yù)知性維修計(jì)劃,確定設(shè)備維修的內(nèi)容和時(shí)間。因此狀態(tài)監(jiān)測(cè)維修既能經(jīng)常保持設(shè)備的完好狀態(tài),又能充分利用零部位的使用壽命,從而延長(zhǎng)大修間隔,縮短大修時(shí)間,減少故障停機(jī)損失。
作為工業(yè)領(lǐng)域的一種關(guān)鍵旋轉(zhuǎn)設(shè)備,對(duì)于終端用來說,關(guān)于電機(jī)維護(hù)的主要是電氣班組的設(shè)備工程師、電機(jī)維護(hù)工程師、檢修人員等;對(duì)于電機(jī)廠家以及電機(jī)經(jīng)銷商來說,主要是電機(jī)售后服務(wù)工程師、電機(jī)銷售人員,會(huì)涉及到電機(jī)的運(yùn)行維護(hù);險(xiǎn)此之外,還有第三方檢修人員等。目前已經(jīng)有很多智能產(chǎn)品號(hào)稱可以實(shí)現(xiàn)電機(jī)的預(yù)測(cè)性維護(hù),但問題也非常多。1)傳感器安裝難。設(shè)備狀態(tài)監(jiān)測(cè)需要振動(dòng)、噪聲、溫度傳感器,通訊協(xié)議并不統(tǒng)一,自成體系,安裝、使用、維護(hù)成本高昂。2)技術(shù)成本高。工業(yè)場(chǎng)景設(shè)備類型多,運(yùn)行工況復(fù)雜,預(yù)測(cè)性維護(hù)算法涉及數(shù)據(jù)預(yù)處理、工業(yè)機(jī)理、機(jī)器學(xué)習(xí),技術(shù)要求很高。3)時(shí)間成本高。預(yù)測(cè)性維護(hù)要實(shí)現(xiàn),前期需要大量歷史數(shù)據(jù)的支撐,數(shù)據(jù)采集、歸納、分析是一個(gè)漫長(zhǎng)的過程。電機(jī)智能運(yùn)維,雖然被各大宣傳媒體提得很多,但還遠(yuǎn)遠(yuǎn)未到落地很好乃至普及的程度,不論是預(yù)測(cè)性維護(hù)的預(yù)測(cè)效果,還是電機(jī)的智能運(yùn)維的市場(chǎng)推廣以及市場(chǎng)接受程度,對(duì)于電機(jī)運(yùn)維來說,都還有很遠(yuǎn)的一段距離!監(jiān)測(cè)結(jié)果的準(zhǔn)確性對(duì)于決策的制定至關(guān)重要。
傳統(tǒng)方法通常無法自適應(yīng)提取特征, 同時(shí)需要一定的離線數(shù)據(jù)訓(xùn)練得到檢測(cè)模型, 但目標(biāo)對(duì)象在線場(chǎng)景下采集到的數(shù)據(jù)有限, 且其數(shù)據(jù)分布與訓(xùn)練數(shù)據(jù)的分布可能因隨機(jī)噪聲、變工況等原因而存在差異, 導(dǎo)致離線訓(xùn)練的模型并不完全適合于在線數(shù)據(jù), 容易降低檢測(cè)結(jié)果的準(zhǔn)確性; 其次, 上述方法通常采用基于異常點(diǎn)的檢測(cè)算法, 未充分考慮樣本前后的時(shí)序關(guān)系, 容易因數(shù)據(jù)微小波動(dòng)而產(chǎn)生誤報(bào)警, 降低檢測(cè)結(jié)果的魯棒性; 再次, 為降低誤報(bào)警, 這類方法需要反復(fù)調(diào)整報(bào)警閾值. 此外, 基于系統(tǒng)分析的故障診斷方法利用狀態(tài)空間描述建立機(jī)理模型, 可獲得理想的診斷和檢測(cè)結(jié)果, 但這類方法通常需要提前知道系統(tǒng)運(yùn)動(dòng)方程等信息, 對(duì)于軸承運(yùn)行來說, 這類信息通常不易獲知. 近年來, 深度神經(jīng)網(wǎng)絡(luò)已被成功應(yīng)用于早期故障特征自動(dòng)提取和識(shí)別, 可自適應(yīng)地提取信息豐富和判別能力強(qiáng)的深度特征, 因此具有較好的普適性. 但是, 這類方法一方面需要大量輔助數(shù)據(jù)進(jìn)行模型訓(xùn)練, 而歷史采集的輔助數(shù)據(jù)與目標(biāo)對(duì)象數(shù)據(jù)可能存在較大不同, 直接訓(xùn)練并不能有效提升在線檢測(cè)的特征表示效果; 另一方面, 在訓(xùn)練過程中未能針對(duì)早期故障引發(fā)的狀態(tài)變化而有目的地強(qiáng)化相應(yīng)特征表示. 因此, 深度學(xué)習(xí)方法在早期故障在線監(jiān)測(cè)中的應(yīng)用仍存在較大的提升空間.工業(yè)廢水的監(jiān)測(cè)檢測(cè)可以幫助企業(yè)了解水質(zhì)狀況,及時(shí)采取措施進(jìn)行治理,保護(hù)水資源。常州耐久監(jiān)測(cè)設(shè)備
監(jiān)測(cè)結(jié)果的分析可以幫助我們了解市場(chǎng)的競(jìng)爭(zhēng)格局和市場(chǎng)份額。杭州仿真監(jiān)測(cè)方案
基于人工神經(jīng)網(wǎng)絡(luò)的診斷方法簡(jiǎn)單處理單元連接而成的復(fù)雜的非線性系統(tǒng),具有學(xué)習(xí)能力,自適應(yīng)能力,非線性逼近能力等。故障診斷的任務(wù)從映射角度看就是從征兆到故障類型的映射。用ANN技術(shù)處理故障診斷問題,不僅能進(jìn)行復(fù)雜故障診斷模式的識(shí)別,還能進(jìn)行故障嚴(yán)重性評(píng)估和故障預(yù)測(cè),由于ANN能自動(dòng)獲取診斷知識(shí),使診斷系統(tǒng)具有自適應(yīng)能力。基于集成型智能系統(tǒng)的診斷方法隨著電機(jī)設(shè)備系統(tǒng)越來越復(fù)雜,依靠單一的故障診斷技術(shù)已難滿足復(fù)雜電機(jī)設(shè)備的故障診斷要求,因此上述各種診斷技術(shù)集成起來形成的集成智能診斷系統(tǒng)成為當(dāng)前電機(jī)設(shè)備故障診斷研究的熱點(diǎn)。主要的集成技術(shù)有:基于規(guī)則的系統(tǒng)與ANN結(jié)合,模糊邏輯與ANN的結(jié)合,混沌理論與ANN的結(jié)合,模糊神經(jīng)網(wǎng)絡(luò)與系統(tǒng)的結(jié)合。杭州仿真監(jiān)測(cè)方案