溫州汽車監(jiān)測(cè)介紹

來源: 發(fā)布時(shí)間:2024-04-16

為了避免發(fā)生災(zāi)難性電機(jī)故障的可能性,業(yè)界產(chǎn)生對(duì)開始退化的感應(yīng)電機(jī)組件進(jìn)行了早期狀態(tài)監(jiān)測(cè)和故障診斷的需求。狀態(tài)監(jiān)測(cè)可在其整個(gè)使用壽命期間對(duì)感應(yīng)電機(jī)的各種部件進(jìn)行持續(xù)評(píng)估。感應(yīng)電機(jī)故障的早期診斷,對(duì)即將發(fā)生的故障提供足夠的警告,為企業(yè)提供基于狀態(tài)的維護(hù)和短暫停機(jī)的時(shí)間建議。電機(jī)故障監(jiān)測(cè)系統(tǒng),電機(jī)狀態(tài)檢測(cè)儀。電機(jī)故障監(jiān)測(cè)系統(tǒng)是采用現(xiàn)代電子技術(shù)和傳感器技術(shù),對(duì)電動(dòng)機(jī)運(yùn)行過程中的各種參數(shù)進(jìn)行實(shí)時(shí)在線檢測(cè)、分析、處理并作出相應(yīng)報(bào)警或指示的裝置?;竟δ馨ǎ?、對(duì)電動(dòng)機(jī)的絕緣電阻、溫升等常規(guī)電氣參數(shù)和振動(dòng)、噪聲等機(jī)械量進(jìn)行測(cè)量;2、通過設(shè)定值比較法確定電機(jī)的實(shí)際工況;3、根據(jù)設(shè)定的報(bào)警閾值或動(dòng)作時(shí)間發(fā)出聲光報(bào)警信號(hào);4、通過通訊接口與plc或其它自動(dòng)化設(shè)備相連實(shí)現(xiàn)遠(yuǎn)程控制。電機(jī)監(jiān)測(cè)系統(tǒng)的目標(biāo)是實(shí)現(xiàn)預(yù)測(cè)性維護(hù),準(zhǔn)確地預(yù)測(cè)電機(jī)何時(shí)會(huì)出現(xiàn)是一個(gè)復(fù)雜問題,需要綜合考慮多個(gè)因素。溫州汽車監(jiān)測(cè)介紹

溫州汽車監(jiān)測(cè)介紹,監(jiān)測(cè)

基于數(shù)據(jù)的故障檢測(cè)與診斷方法能夠?qū)A康墓I(yè)數(shù)據(jù)進(jìn)行統(tǒng)計(jì)分析和特征提取,將系統(tǒng)的狀態(tài)分為正常運(yùn)行狀態(tài)和故障狀態(tài)。故障檢測(cè)是判斷系統(tǒng)是否處于預(yù)期正常運(yùn)行狀態(tài),判斷系統(tǒng)是否發(fā)生異常故障,相當(dāng)于一個(gè)二分類任務(wù)。故障診斷是在確定發(fā)生故障的時(shí)候判斷系統(tǒng)處于哪一種故障狀態(tài),相當(dāng)于一個(gè)多分類任務(wù)。因此,故障檢測(cè)和診斷技術(shù)的研究類似于模式識(shí)別,分為4個(gè)的步驟:數(shù)據(jù)獲取、特征提取、特征選擇和特征分類。1)數(shù)據(jù)獲取步驟是從過程系統(tǒng)收集可能影響過程狀態(tài)的信號(hào),包括溫度、流量等過程變量;2)特征提取步驟是將采集的原始信號(hào)映射為有辨識(shí)度的狀態(tài)信息;3)特征選擇步驟是將與狀態(tài)變化相關(guān)的變量提取出來;4)特征分類步驟是通過算法將前幾步中選擇的特征進(jìn)行故障檢測(cè)與診斷。在大數(shù)據(jù)這一背景下,傳統(tǒng)的基于數(shù)據(jù)的故障檢測(cè)與診斷方法被廣泛應(yīng)用,但是,這些方法有一些共同的缺點(diǎn):特征提取需要大量的知識(shí)和信號(hào)處理技術(shù),并且對(duì)于不同的任務(wù),沒有統(tǒng)一的程序來完成。此外,常規(guī)的基于機(jī)器學(xué)習(xí)的方法結(jié)構(gòu)較淺,在提取信號(hào)的高維非線性關(guān)系方面能力有限。溫州動(dòng)力設(shè)備監(jiān)測(cè)設(shè)備盈蓓德開發(fā)的刀具監(jiān)測(cè)系統(tǒng)可大幅度提效率、提高工件尺寸精度和一致性、減少生產(chǎn)成本,實(shí)現(xiàn)數(shù)控加工自動(dòng)化。

溫州汽車監(jiān)測(cè)介紹,監(jiān)測(cè)

傳統(tǒng)維護(hù)模式中的故障后維護(hù)與定期維護(hù)將影響生產(chǎn)效率與產(chǎn)品質(zhì)量,并大幅提高制造商的成本。隨著物聯(lián)網(wǎng)、大數(shù)據(jù)、云計(jì)算、機(jī)器學(xué)習(xí)與傳感器等技術(shù)的成熟,預(yù)測(cè)性維護(hù)技術(shù)應(yīng)運(yùn)而生。以各類如電機(jī)、軸承等設(shè)備為例,目前已發(fā)展到較為成熟的在線持續(xù)監(jiān)測(cè)階段,來實(shí)現(xiàn)查看設(shè)備是否需要維護(hù)、怎么安排維護(hù)時(shí)間來減少計(jì)劃性停產(chǎn)等,并能夠快速、有效的通過物聯(lián)網(wǎng)接入到整個(gè)網(wǎng)絡(luò),將數(shù)據(jù)回傳至管理中心,來實(shí)現(xiàn)電機(jī)設(shè)備的預(yù)測(cè)性維護(hù)。以各類如電機(jī)、軸承等設(shè)備為例,目前已發(fā)展到較為成熟在線持續(xù)監(jiān)測(cè)階段,來實(shí)現(xiàn)查看設(shè)備是否需要維護(hù)、怎么安排維護(hù)時(shí)間來減少計(jì)劃性停產(chǎn)等,并能夠快速、有效的通過物聯(lián)網(wǎng)接入到整個(gè)網(wǎng)絡(luò),將數(shù)據(jù)回傳至管理中心,來實(shí)現(xiàn)電機(jī)設(shè)備預(yù)測(cè)性維護(hù)。

振動(dòng)的監(jiān)測(cè)是機(jī)械設(shè)備狀態(tài)監(jiān)測(cè)與故障診斷的重要手段之一。通過對(duì)機(jī)械設(shè)備在運(yùn)行過程中產(chǎn)生的振動(dòng)信號(hào)進(jìn)行測(cè)量、分析和處理,可以獲取設(shè)備的狀態(tài)信息,進(jìn)而判斷設(shè)備的健康狀況,預(yù)測(cè)故障發(fā)展趨勢(shì),及時(shí)發(fā)現(xiàn)并處理潛在問題。振動(dòng)的監(jiān)測(cè)方法通??梢苑譃槎ㄆ邳c(diǎn)檢、隨機(jī)點(diǎn)檢和長(zhǎng)期監(jiān)測(cè)等幾種方式。定期點(diǎn)檢是按照預(yù)定的時(shí)間間隔對(duì)設(shè)備進(jìn)行振動(dòng)測(cè)量,適用于對(duì)設(shè)備狀態(tài)進(jìn)行定期檢查和評(píng)估。隨機(jī)點(diǎn)檢則是在設(shè)備運(yùn)行過程中,根據(jù)需要對(duì)設(shè)備進(jìn)行振動(dòng)測(cè)量,適用于對(duì)設(shè)備狀態(tài)進(jìn)行實(shí)時(shí)跟蹤和監(jiān)測(cè)。長(zhǎng)期監(jiān)測(cè)則是對(duì)設(shè)備進(jìn)行連續(xù)不斷的振動(dòng)監(jiān)測(cè),適用于對(duì)設(shè)備狀態(tài)進(jìn)行長(zhǎng)期跟蹤和分析。在振動(dòng)監(jiān)測(cè)中,常用的傳感器包括加速度計(jì)、速度計(jì)和位移計(jì)等。這些傳感器可以測(cè)量設(shè)備在不同方向上的振動(dòng)信號(hào),并將振動(dòng)信號(hào)轉(zhuǎn)換為電信號(hào)進(jìn)行傳輸和處理。通過對(duì)振動(dòng)信號(hào)的分析,可以獲取設(shè)備的振動(dòng)特征參數(shù),如振動(dòng)幅值、頻率、相位等,進(jìn)而判斷設(shè)備的運(yùn)行狀態(tài)和故障類型??傊?,振動(dòng)的監(jiān)測(cè)是機(jī)械設(shè)備狀態(tài)監(jiān)測(cè)與故障診斷的重要手段之一。通過對(duì)振動(dòng)信號(hào)的測(cè)量、分析和處理,可以及時(shí)發(fā)現(xiàn)并處理潛在問題,提高設(shè)備的可靠性和生產(chǎn)效率。同時(shí),振動(dòng)監(jiān)測(cè)技術(shù)還可以為設(shè)備的預(yù)測(cè)性維護(hù)和優(yōu)化運(yùn)行提供有力支持。通過電機(jī)監(jiān)測(cè),可以實(shí)時(shí)了解電機(jī)的運(yùn)行狀態(tài)、性能參數(shù)以及潛在故障,從而及時(shí)采取措施進(jìn)行維修和保養(yǎng)。

溫州汽車監(jiān)測(cè)介紹,監(jiān)測(cè)

傳統(tǒng)方法通常無法自適應(yīng)提取特征, 同時(shí)需要一定的離線數(shù)據(jù)訓(xùn)練得到檢測(cè)模型, 但目標(biāo)對(duì)象在線場(chǎng)景下采集到的數(shù)據(jù)有限, 且其數(shù)據(jù)分布與訓(xùn)練數(shù)據(jù)的分布可能因隨機(jī)噪聲、變工況等原因而存在差異, 導(dǎo)致離線訓(xùn)練的模型并不完全適合于在線數(shù)據(jù), 容易降低檢測(cè)結(jié)果的準(zhǔn)確性; 其次, 上述方法通常采用基于異常點(diǎn)的檢測(cè)算法, 未充分考慮樣本前后的時(shí)序關(guān)系, 容易因數(shù)據(jù)微小波動(dòng)而產(chǎn)生誤報(bào)警, 降低檢測(cè)結(jié)果的魯棒性; 再次, 為降低誤報(bào)警, 這類方法需要反復(fù)調(diào)整報(bào)警閾值. 此外, 基于系統(tǒng)分析的故障診斷方法利用狀態(tài)空間描述建立機(jī)理模型, 可獲得理想診斷和檢測(cè)結(jié)果, 但這類方法通常需要提前知道系統(tǒng)運(yùn)動(dòng)方程等信息, 對(duì)于軸承運(yùn)行來說, 這類信息通常不易獲知. 近年來, 深度神經(jīng)網(wǎng)絡(luò)已被成功應(yīng)用于早期故障特征自動(dòng)提取和識(shí)別, 可自適應(yīng)地提取信息豐富和判別能力強(qiáng)的深度特征, 因此具有較好的普適性. 但是, 這類方法一方面需要大量輔助數(shù)據(jù)進(jìn)行模型訓(xùn)練, 而歷史采集的輔助數(shù)據(jù)與目標(biāo)對(duì)象數(shù)據(jù)可能存在較大不同, 直接訓(xùn)練并不能有效提升在線檢測(cè)的特征表示效果; 另一方面, 在訓(xùn)練過程中未能針對(duì)早期故障引發(fā)的狀態(tài)變化而有目的地強(qiáng)化相應(yīng)特征表示. 因此, 深度學(xué)習(xí)方法在早期故障在線監(jiān)測(cè)中的應(yīng)用仍存在較大的提升空間.通過云計(jì)算和大數(shù)據(jù)技術(shù),可以實(shí)現(xiàn)電機(jī)的遠(yuǎn)程監(jiān)測(cè)和集中管理,提高維護(hù)效率和管理水平。寧波降噪監(jiān)測(cè)技術(shù)

數(shù)控機(jī)床刀具的監(jiān)測(cè)對(duì)于提高生產(chǎn)效率、降低成本以及確保加工質(zhì)量具有重要意義。溫州汽車監(jiān)測(cè)介紹

柴油機(jī)狀態(tài)監(jiān)測(cè)與故障診斷系統(tǒng)是一個(gè)集數(shù)據(jù)采集與分析、狀態(tài)監(jiān)測(cè)、故障診斷為一體的多任務(wù)處理系統(tǒng), 可實(shí)現(xiàn)柴油機(jī)監(jiān)測(cè)、保護(hù)、分析、診斷等功能。主要包括數(shù)據(jù)采集與工況監(jiān)測(cè)、活塞缸套磨損監(jiān)測(cè)分析、主軸承磨損狀態(tài)監(jiān)測(cè)分析、氣閥間隙異常監(jiān)測(cè)分析和瞬時(shí)轉(zhuǎn)速監(jiān)測(cè)分析等各種功能。信號(hào)分析、特征提取及診斷原理是每個(gè)監(jiān)測(cè)診斷子功能的**部分, 各子功能都有相應(yīng)的信號(hào)分析與特征提取方法, 包括信號(hào)預(yù)處理、時(shí)域、頻域分析、小波分析等, 自動(dòng)形成反映柴油機(jī)運(yùn)行狀態(tài)的特征量, 為系統(tǒng)的診斷推理提供信息來源。采用模糊聚類理論來檢驗(yàn)特征參量的有效性、建立故障標(biāo)準(zhǔn)征兆群, 并運(yùn)用模糊貼近度來實(shí)施故障類型的診斷識(shí)別。溫州汽車監(jiān)測(cè)介紹