成都電流傳感器發(fā)展現(xiàn)狀

來(lái)源: 發(fā)布時(shí)間:2024-02-21

然交流比較儀和直流比較儀均不適宜直接用于交直流電流測(cè)量,但在電流檢測(cè)方法、電磁理論分析與結(jié)構(gòu)設(shè)計(jì)上對(duì)于交直流電流測(cè)量具有寶貴的借鑒意義,交直流電流比較儀及交直流電流傳感器的閉環(huán)測(cè)量系統(tǒng),均基于上述交流比較儀及直流比較儀的系統(tǒng)組成及結(jié)構(gòu),其中磁調(diào)制方法廣泛應(yīng)用于精密電流測(cè)量領(lǐng)域。因此,本文對(duì)磁調(diào)制方法在于交直流電流檢測(cè)中的應(yīng)用做進(jìn)一步研究,從而完成交直流電流傳感器研制。國(guó)外較早進(jìn)行交直流檢測(cè)研究的是加拿大的EddySo教授,1993年共同提出了開口式高精度交直流電流測(cè)量方法。由于這個(gè)感應(yīng)電流與被測(cè)導(dǎo)體中的電流成正比,因此可以通過(guò)測(cè)量這個(gè)感應(yīng)電流來(lái)間接測(cè)量被測(cè)導(dǎo)體中的電流。成都電流傳感器發(fā)展現(xiàn)狀

成都電流傳感器發(fā)展現(xiàn)狀,電流傳感器

基于自激振蕩磁通門技術(shù)和傳統(tǒng)電流比較儀結(jié)構(gòu),通過(guò)改 進(jìn)鐵芯結(jié)構(gòu)及信號(hào)解調(diào)電路, 構(gòu)建了閉環(huán)零磁通交直流電流測(cè)量方案,研制了新型交直 流電流傳感器樣機(jī)。樣機(jī)總體包括兩個(gè)鐵芯三個(gè)繞組, 其中改進(jìn)結(jié)構(gòu)的自激振蕩磁通門 傳感器作為新型交直流電流傳感器的零磁通檢測(cè)器, 檢測(cè)一二次電流磁勢(shì)之差,構(gòu)成了 新型交直流電流傳感器的電流檢測(cè)模塊,除此之外還包括信號(hào)處理模塊, 誤差控制模塊 及電流反饋模塊。環(huán)形鐵芯 C1 及 C2 為傳感器磁性器件,兩者磁性材料參數(shù)一 致, 幾何尺寸完全一致, 均選取高磁導(dǎo)率、低矯頑力、高磁飽和感應(yīng)強(qiáng)度的非線性鐵磁 材料。成都電流傳感器發(fā)展現(xiàn)狀2023年以來(lái),在上游原材料價(jià)格回落。

成都電流傳感器發(fā)展現(xiàn)狀,電流傳感器

比較各個(gè)鐵芯的矩形比及磁導(dǎo)率參數(shù)可知,鐵基納米晶不僅磁導(dǎo)率高、磁飽和強(qiáng)度大且矩形比高,可保證鐵芯飽和激磁電流閾值較小,易于進(jìn)入正負(fù)交替飽和狀態(tài),因此本文選擇了鐵基納米晶作為鐵芯材料。磁芯材料的尺寸取決于一次穿心導(dǎo)體的幾何尺寸,鐵芯形狀選擇為環(huán)形鐵芯形狀。經(jīng)查閱相關(guān)資料,本文考慮配網(wǎng)用500A母排尺寸及傳感器纏繞各個(gè)繞組及加裝外殼尺寸后的內(nèi)徑裕量,終設(shè)計(jì)環(huán)形鐵芯C1及C2內(nèi)徑大小d:75mm,外徑大小D:85mm,縱向高度h:10mm。同時(shí)鐵芯截面面積SC及平均磁路長(zhǎng)度le滿足下式:

一階低通濾波器及高通濾波器的截止頻率f0為:f0=采樣電阻Rs2后接高通濾波器用于獲取高于50Hz的反向激磁電流中無(wú)用高頻分量。將高通濾波器HPF濾波后信號(hào)V’Rs2與采樣電阻Rs1上電壓信號(hào)疊加后合成電壓信號(hào)VR12完成信號(hào)解調(diào),VR12中有用低頻信號(hào)為直流分量及工頻50Hz交流,故低通濾波器LPF截止頻率應(yīng)大于50Hz,通過(guò)參數(shù)設(shè)計(jì),實(shí)際LPF的截止頻率設(shè)計(jì)為59Hz。設(shè)計(jì)HPF的截止頻率為59Hz,以完成對(duì)采樣電阻Rs2上的激磁電壓信號(hào)的采樣并通過(guò)HPF取出其反向無(wú)用高頻分量。隨著可再生能源的大規(guī)模開發(fā)和利用,電力系統(tǒng)對(duì)調(diào)節(jié)能力、安全穩(wěn)定性的需求越來(lái)越高。

成都電流傳感器發(fā)展現(xiàn)狀,電流傳感器

為了降低直流分量對(duì)電能計(jì)量的影響及避免直流分量對(duì)交流電力設(shè)備造成損害,在 不影響交流測(cè)量精度的同時(shí),能對(duì)直流分量進(jìn)行監(jiān)測(cè),是智能配網(wǎng)對(duì)新一代電流測(cè)量設(shè) 備的新需求。中國(guó)電網(wǎng)公司在 2016 年 9 月,其運(yùn)維檢修部門組織編寫了《10kV 一體化 柱上變電和配電一二次成套設(shè)備典型設(shè)計(jì)及檢測(cè)規(guī)范》,提出適合我國(guó)配電網(wǎng)的一體化 配電成套設(shè)備的概念,而配網(wǎng)設(shè)備中一二次融合傳感器技術(shù)是配網(wǎng)自動(dòng)化設(shè)備的很重要的環(huán) 節(jié)之一,因此開展一二次融合下電流傳感器技術(shù)研究迫在眉睫。儲(chǔ)能系統(tǒng)多維度安全防護(hù):本體電芯材料、工藝、結(jié)構(gòu)多方優(yōu)化。合肥工控級(jí)電流傳感器發(fā)展現(xiàn)狀

鋰電儲(chǔ)能產(chǎn)業(yè)布局集中度不斷提升。成都電流傳感器發(fā)展現(xiàn)狀

偶次諧波法進(jìn)行了分析,該方法簡(jiǎn)單、有效,但是檢測(cè)電路復(fù)雜,精度較低,溫漂較大。因此為改善磁通門技術(shù)的現(xiàn)狀,吉林大學(xué)程福德團(tuán)隊(duì)提出了時(shí)間差型磁通門,該方法有可能解決現(xiàn)有磁通門分辨力、測(cè)量精度難以繼續(xù)提高的問(wèn)題,是磁通門研究中一個(gè)值得重視的方向; g Velasco-Quesada等提出了零磁通反饋式磁通門,使磁芯工作在零磁通狀態(tài)下,有效減小磁滯對(duì)測(cè)量的影響; Takahiro Kudo等給出了一種通過(guò)測(cè)量輸出信號(hào)峰值位置變化的方法得到被測(cè)電流的成都電流傳感器發(fā)展現(xiàn)狀

標(biāo)簽: 電流傳感器