南昌磁通門電流傳感器

來源: 發(fā)布時(shí)間:2024-02-26

磁通門傳感器是一種根據(jù)電磁感應(yīng)現(xiàn)象加以改造的變壓器式的器件,只是它的變壓器效應(yīng)是用于對(duì)外界被測(cè)磁場(chǎng)進(jìn)行調(diào)制。它的基本原理可以由法拉第電磁感應(yīng)定律進(jìn)行解釋。磁通門傳感器是采用某些高導(dǎo)磁率,低矯頑力的軟磁材料(例如坡莫合金)作為磁芯,磁芯上纏繞有激勵(lì)線圈和感應(yīng)線圈。在激勵(lì)線圈中通入交變電流,則在其產(chǎn)生的激勵(lì)磁場(chǎng)的作用下,感應(yīng)線圈中產(chǎn)生由外界環(huán)境磁場(chǎng)調(diào)制而成的感應(yīng)電勢(shì)。該電勢(shì)包含了激勵(lì)信號(hào)頻率的各個(gè)偶次諧波分量,通過后續(xù)的各種傳感器信號(hào)處理電路,利用諧波法對(duì)感應(yīng)電勢(shì)進(jìn)行檢測(cè)處理,使得該電勢(shì)與外界被測(cè)磁場(chǎng)成正比。又因?yàn)榇磐ㄩT傳感器的磁芯只有工作在飽和狀態(tài)下才能獲得較大的信號(hào),所以該傳感器又稱為磁飽和傳感器。與磁通門相關(guān)的技術(shù)問世于20世紀(jì)30年代初期,首先在1931年,Thomas申請(qǐng)了關(guān)于磁通門的項(xiàng)知識(shí)產(chǎn)權(quán),接著,有關(guān)科學(xué)家們根據(jù)與磁現(xiàn)象相關(guān)的各種大量的實(shí)驗(yàn),總結(jié)并提出磁通門技術(shù)的工作原理,且當(dāng)時(shí)的實(shí)驗(yàn)精度達(dá)到了納特(nT)級(jí)別。隨后各國(guó)的科學(xué)家們對(duì)與磁通門相關(guān)的技術(shù)做了進(jìn)一步的實(shí)驗(yàn)和探討研究,從而證實(shí)了磁通門技術(shù)的實(shí)用性和可發(fā)展性,在隨后的幾十年里,利用該技術(shù)制造的各種儀器得到了不斷的改進(jìn)和完善。這種誤差可能由多種因素引起,包括但不限于:溫度變化、電氣噪聲、機(jī)械磨損以及制造過程中的不準(zhǔn)確性。南昌磁通門電流傳感器

南昌磁通門電流傳感器,電流傳感器

電流傳感器在新能源汽車中有多個(gè)重要應(yīng)用。以下是一些常見的應(yīng)用: 電池管理系統(tǒng)(Battery Management System,簡(jiǎn)稱BMS):電池是新能源汽車的重要部件之一,而電流傳感器在BMS中起著關(guān)鍵作用。它用于測(cè)量電池充電和放電過程中的電流變化,以監(jiān)測(cè)電池的狀態(tài)和保護(hù)電池免受過載和過放的損害。 電動(dòng)機(jī)控制系統(tǒng):在新能源汽車中,電動(dòng)機(jī)是用于驅(qū)動(dòng)車輛的關(guān)鍵部件。電流傳感器被用于測(cè)量電動(dòng)機(jī)的工作電流,以幫助控制電動(dòng)機(jī)的運(yùn)行狀態(tài)和保護(hù)電動(dòng)機(jī)免受過載和過熱的損害。 充電系統(tǒng):電流傳感器在新能源汽車的充電系統(tǒng)中也得到了非常多應(yīng)用。它被用于測(cè)量充電過程中的電流變化,以監(jiān)測(cè)充電狀態(tài)和確保充電過程的安全和效率。 動(dòng)力電池故障診斷:電流傳感器用于監(jiān)測(cè)動(dòng)力電池系統(tǒng)中的電流變化,以便診斷和檢測(cè)電池組件或電路的故障。通過監(jiān)測(cè)電流變化,可以及時(shí)發(fā)現(xiàn)故障并采取適當(dāng)?shù)拇胧?總的來說,電流傳感器在新能源汽車中扮演著重要的角色,幫助測(cè)量和監(jiān)測(cè)電流變化,保證電池、電動(dòng)機(jī)和充電系統(tǒng)的正常運(yùn)行,并實(shí)現(xiàn)故障診斷和保護(hù)措施。這些應(yīng)用有助于提高新能源汽車的安全性、可靠性和效率。溫州循環(huán)測(cè)試電流傳感器案例結(jié)合自激振蕩磁通門技術(shù)和電流比較儀結(jié)構(gòu),研制出三鐵芯三繞組的閉環(huán)零磁通交直流電流傳感器。

南昌磁通門電流傳感器,電流傳感器

假設(shè)1:Im<<IC,Ith<<IC,βIp<<IC,對(duì)ln函數(shù)進(jìn)行化簡(jiǎn),簡(jiǎn)化了TP與TN表達(dá)式。假設(shè)2:在線性區(qū)A激磁電感L遠(yuǎn)大于飽和區(qū)B、C激磁電感l(wèi),因此τ2>>τ1,略去了τ1項(xiàng)時(shí)間,得到簡(jiǎn)化的激磁電壓周期公式。假設(shè)3:βIp<<IC,略去了βIp項(xiàng),終得到簡(jiǎn)化的線性模型。為了達(dá)到理想的激磁電流平均值與一次電流之間的線性關(guān)系,三條假設(shè)需要完全滿足。因此為了更好地滿足這些假設(shè)條件以提高自激振蕩磁通門電路的線性度可以采取的措施有:(a)選取高磁導(dǎo)率μr,低矯頑力Hc,高磁飽和強(qiáng)度BS的磁芯材料作為鐵芯,以保證鐵芯C1磁化曲線的高度非線性,以滿足假設(shè)2。

偶次諧波法進(jìn)行了分析,該方法簡(jiǎn)單、有效,但是檢測(cè)電路復(fù)雜,精度較低,溫漂較大。因此為改善磁通門技術(shù)的現(xiàn)狀,吉林大學(xué)程福德團(tuán)隊(duì)提出了時(shí)間差型磁通門,該方法有可能解決現(xiàn)有磁通門分辨力、測(cè)量精度難以繼續(xù)提高的問題,是磁通門研究中一個(gè)值得重視的方向; g Velasco-Quesada等提出了零磁通反饋式磁通門,使磁芯工作在零磁通狀態(tài)下,有效減小磁滯對(duì)測(cè)量的影響; Takahiro Kudo等給出了一種通過測(cè)量輸出信號(hào)峰值位置變化的方法得到被測(cè)電流的它在高速電流測(cè)量、電力電子變換器監(jiān)測(cè)、電機(jī)控制、電磁兼容性測(cè)試等領(lǐng)域有著很多的應(yīng)用前景。

南昌磁通門電流傳感器,電流傳感器

電壓傳感器具有高精度、寬測(cè)量范圍、快速響應(yīng)、寬工作溫度范圍、低功耗、高線性度、良好的穩(wěn)定性、安全可靠、易于安裝和使用、多種輸出接口、可編程性和耐用性等優(yōu)勢(shì)。這些優(yōu)勢(shì)使得電壓傳感器成為電力系統(tǒng)和工業(yè)自動(dòng)化等領(lǐng)域中不可或缺的重要設(shè)備。電壓傳感器的輸出與輸入電壓之間具有較高的線性關(guān)系,能夠準(zhǔn)確地反映被測(cè)電壓信號(hào)的變化情況。良好的穩(wěn)定性:電壓傳感器通常具有較好的長(zhǎng)期穩(wěn)定性,能夠在長(zhǎng)時(shí)間使用中保持較高的測(cè)量準(zhǔn)確度,不易受外界環(huán)境因素的影響。安全可靠:電壓傳感器在設(shè)計(jì)和制造過程中通常考慮了安全性和可靠性要求,能夠提供安全可靠的電壓測(cè)量解決方案。在高速電力電子變換器、電機(jī)控制、電磁兼容性測(cè)試等領(lǐng)域,需要測(cè)量和監(jiān)控高頻電流。上海普樂銳思電流傳感器價(jià)格

從鋰電產(chǎn)業(yè)規(guī)??矗瑥V東、江蘇、福建、四川等省份位居全國(guó)前列。南昌磁通門電流傳感器

標(biāo)準(zhǔn)磁通門電流傳感器實(shí)際與閉環(huán)霍爾電流傳感器結(jié)構(gòu)相似,由相同帶縫隙的磁 路和用來得到零磁通的次級(jí)線圈構(gòu)成?;魻栯娏鱾鞲衅髋c磁通門電流傳感器主要的區(qū)別在于氣隙磁場(chǎng)檢測(cè)方式的不同:前者是通過一個(gè)霍爾元件獲得電壓信息進(jìn)而得到被測(cè)電流;后者則是通過一個(gè)所謂的飽和電感來測(cè)量電流的。飽和電感的電感數(shù)值依賴于磁芯的磁導(dǎo)率,磁通密度高的時(shí)候磁芯飽和,電感值較低。低磁通密度時(shí),電感值則較高。外部磁場(chǎng)的變化影響磁芯的飽和水平,進(jìn)而改變磁芯導(dǎo)磁系數(shù),然后影響電感值。因此,當(dāng)存在外界磁場(chǎng)時(shí)將會(huì)改變場(chǎng)測(cè)量的電感值。如果飽和電感設(shè)計(jì)充分,這種改變非常明顯。南昌磁通門電流傳感器

標(biāo)簽: 電流傳感器