雖然并行比較型ADC轉(zhuǎn)換器具有延時的問題,但本文對信號實時性要求不高,在保證高采樣率的條件下,選用雙通道采樣并行比較型ADC能夠較好地滿足本文需求。為了保證檢測電路能夠按照預(yù)定的設(shè)計完成對應(yīng)功能的檢測,需要進(jìn)行控制邏輯電路的設(shè)計??刂齐娐返闹饕峭ㄟ^電路中的繼電器控制信號通道的轉(zhuǎn)換,使信號經(jīng)過相應(yīng)的處理后進(jìn)行采集。面對本文中高頻信號的采集需求,與傳統(tǒng)的單片機(jī)相比,F(xiàn)PGA擁有靈活、快速、并行性等特點,并且FPGA的IO資源豐富,更加適合作為邏輯控制電路的選擇。系統(tǒng)的檢測過程是先將待測產(chǎn)品放置于程控電源與電子負(fù)載搭建起來的實際工作狀況模擬平臺。鎮(zhèn)江漏電保護(hù)電流傳感器廠家
電流的檢測同樣常見的有兩種方法,一種是直接測量法,另一種是間接測量法。直接測量的方法是將電阻直接串聯(lián),通過電阻上電壓的大小計算推導(dǎo)出電流的大小,應(yīng)用的是歐姆定律。間接測量法則更加復(fù)雜一些,需要首先根據(jù)霍爾效應(yīng)來完成磁場和電場的轉(zhuǎn)換,再根據(jù)歐姆定律得到電流大小。通過霍爾效應(yīng)來完成間接測量的方法需要使用霍爾元件,并設(shè)計相應(yīng)的復(fù)雜電路,成本較高,相應(yīng)的可以檢測更高的電流值。直接測量法精度高,電路實現(xiàn)簡單易于設(shè)計調(diào)試,雖然對于電壓的檢測范圍要小于間接測量法,但直接測量法測量范圍完全可以滿足本文的測量指標(biāo)。所以本文擬采用直接測量法,先將電流轉(zhuǎn)換成電壓信號,通過歐姆定律和電壓值的大小反推出電流值的大小。根據(jù)上文分析,本文采用直接測量法,通過電阻的分流,將電流轉(zhuǎn)換成電壓信號,根據(jù)歐姆定律將電壓信號帶入,計算出電流信號的大小。溫州動力電池測試電流傳感器廠家現(xiàn)貨指電源輸出的負(fù)載產(chǎn)生改變時,輸出電壓對負(fù)載變化的適應(yīng)能力。
使用直接測量法,借助電阻分壓的方式進(jìn)行檢測,精度和帶寬極高,并且不會受到磁場的干擾,精度和帶寬只考慮電阻所受溫度和分壓電阻上分布電感的影響,極大的方便了對于精度誤差的分析和修正。綜上所述,本文的電流采集電路針對開關(guān)電源電流進(jìn)行分壓采集,電流值的大小不需要額外進(jìn)行磁-電場轉(zhuǎn)換即可精確獲取。被測信號都屬于模擬信號,所以需要將所有信號都通過模數(shù)轉(zhuǎn)換器將其轉(zhuǎn)換為數(shù)字信號才能進(jìn)行下一步的數(shù)字信號處理工作,**終顯示檢測結(jié)果。數(shù)據(jù)轉(zhuǎn)換電路主要是對采集到的模擬信號進(jìn)行數(shù)據(jù)轉(zhuǎn)換,即通過轉(zhuǎn)換將輸入的模擬信號轉(zhuǎn)為數(shù)字信號,并將數(shù)字信號進(jìn)行存儲和輸出。對于數(shù)字化的電壓、電流檢測,模數(shù)轉(zhuǎn)換器是至關(guān)重要的一環(huán),電壓、電流的檢測對數(shù)模轉(zhuǎn)換器的轉(zhuǎn)換速度和轉(zhuǎn)換精度都有很高的要求,而且需要具有很高的抗干擾性。
根據(jù)待測參數(shù)特征,將待測信號主要分為兩種,緩變信號和瞬態(tài)信號,其中瞬態(tài)信號又包括紋波信號和浪涌信號,針對不同信號的特征,完成了基于不同檔位下的通道轉(zhuǎn)換電路設(shè)計,由于后級電路大致相同,以電壓信號為例設(shè)計后級模擬信號處理電路。分別設(shè)計了針對大電壓的分壓衰減電路、程控增益電路、抗混疊濾波電路以及AD轉(zhuǎn)換驅(qū)動電路。依據(jù)檢測系統(tǒng)設(shè)計指標(biāo),分析電路中產(chǎn)生的干擾噪聲,并采用Cadence對關(guān)鍵電路完成仿真分析,降低電路中噪聲的影響。設(shè)計了電源電路和隔離模塊,保證模擬電路和數(shù)字電路的分離,降低電源噪聲的影響,并對電路控制邏輯進(jìn)行分析,設(shè)計了數(shù)字信號的處理傳輸模塊。應(yīng)避免輸出電壓出現(xiàn)大幅度過沖的現(xiàn)象。
關(guān)于檢測電路自身的產(chǎn)生的噪聲,主要是來源于電路中的元器件,由于復(fù)雜的元器件集成在一塊電路板上,相互之間會耦合出各種形式的電路結(jié)構(gòu)。元器件中同時還會有大量的電子的運動,這些都將帶來一些不可掌控的電噪聲,包括像散粒噪聲、熱噪聲以及1噪聲,在集成電路芯片中這些噪聲都是無法避免的,大多也無法消除。熱噪聲是由于器件中的電子的隨機(jī)熱運動而產(chǎn)生的噪聲,噪聲的大小與頻率無關(guān),與溫度有關(guān)。熱噪聲主要的相關(guān)元件是電阻以及具有電阻性質(zhì)的元件,隨著電子的熱運動在電阻兩端產(chǎn)生電荷堆積而形成的噪聲電壓。電子的無規(guī)則運動會在電阻內(nèi)部形成隨機(jī)起伏幅度、時間和方向的微小電流,平均為零。根據(jù)待測參數(shù)特征,將待測信號主要分為兩種,緩變信號和瞬態(tài)信號.深圳高穩(wěn)定性電流傳感器設(shè)計標(biāo)準(zhǔn)
由于FPGA本身自帶的內(nèi)存空間有限,無法滿足大量數(shù)據(jù)的存儲,選擇外置存儲器芯片來實現(xiàn)對實時數(shù)據(jù)的存儲。鎮(zhèn)江漏電保護(hù)電流傳感器廠家
模數(shù)轉(zhuǎn)換器按照其實現(xiàn)方法可以分為積分型、逐次比較型、并行比較型和Σ-Δ調(diào)制型等。其中像逐次比較型和積分型之類模數(shù)轉(zhuǎn)換器都屬于線性脈沖編碼調(diào)制(LPCM)型A/D轉(zhuǎn)換器。這類轉(zhuǎn)換器為了實現(xiàn)更高分辨率的提升,內(nèi)部往往需要設(shè)計復(fù)雜的比較網(wǎng)絡(luò)和具有高精度的模擬元件。受限于內(nèi)部結(jié)構(gòu),所這一類型轉(zhuǎn)換器的分辨率也受到限制。Σ-Δ調(diào)制型,即增量調(diào)制編碼型模數(shù)轉(zhuǎn)換器與上述轉(zhuǎn)換器不同,線性脈沖編碼調(diào)制型A/D轉(zhuǎn)換器不考慮信號抽樣值之間的互相關(guān)系,直接對抽樣的數(shù)據(jù)進(jìn)行數(shù)字信號的轉(zhuǎn)化;而Σ-Δ型A/D轉(zhuǎn)換器則是根據(jù)前后抽樣值的差也就是抽樣增量的大小來進(jìn)行數(shù)字量的轉(zhuǎn)化,實際上是一種采用過采樣技術(shù)以速率換分辨率的方案。鎮(zhèn)江漏電保護(hù)電流傳感器廠家