全場三維非接觸測量裝置

來源: 發(fā)布時間:2023-12-04

光學應變測量是一種非接觸式的測量方法,可以用于測量物體在受力或變形時的應變情況。它具有高精度和高分辨率的特點,可以實現(xiàn)對物體應變情況的準確測量。然而,光學應變測量的精度和分辨率受到多種因素的影響。首先,被測物體的特性會對測量精度產(chǎn)生影響。物體的表面粗糙度、反射率和形狀等因素都會影響光的傳播和反射,從而影響測量結(jié)果的準確性。因此,在進行光學應變測量時,需要對被測物體的特性進行充分的了解和分析,以確保測量結(jié)果的精度。其次,選擇合適的測量設(shè)備也是保證測量精度的重要因素。不同的測量設(shè)備具有不同的分辨率和靈敏度,需要根據(jù)具體的測量需求選擇合適的設(shè)備。同時,進行準確的校準也是確保測量精度的關(guān)鍵步驟。通過與已知應變的標準進行比對,可以對測量設(shè)備進行校準,提高測量結(jié)果的準確性。此外,對被測物體進行適當?shù)奶幚硪彩翘岣邷y量精度的重要措施。例如,對于表面粗糙的物體,可以進行光學平滑處理,以減少光的散射和反射,提高測量的準確性。對于反射率較低的物體,可以使用增強反射技術(shù),提高信號強度和測量精度。光學非接觸應變測量可以實時、非接觸地評估微電子器件的應變狀態(tài)和性能。全場三維非接觸測量裝置

全場三維非接觸測量裝置,光學非接觸應變測量

光學非接觸應變測量方法是一種利用光學原理來測量物體應變的技術(shù)。其中一種方法是光彈性法,它基于光彈性效應來實現(xiàn)應變的測量。光彈性法利用光在物體中傳播時受到應變的影響,通過對光的偏振狀態(tài)和干涉圖樣的分析來測量應變。當光通過應變體時,由于應變的存在,光的傳播速度和偏振狀態(tài)會發(fā)生改變。通過測量光的傳播速度和偏振狀態(tài)的變化,可以推斷出物體的應變情況。光彈性法具有高精度和高靈敏度的優(yōu)點,適用于對微小應變的測量。它可以實現(xiàn)非接觸式的測量,不會對被測物體造成損傷。同時,由于光的傳播速度和偏振狀態(tài)的變化可以通過光學儀器進行精確測量,因此可以獲得較高的測量精度。除了光彈性法,還有其他一些光學非接觸應變測量方法。全息干涉法是一種利用全息術(shù)和干涉原理來測量應變的方法,它可以實現(xiàn)全場測量,適用于大范圍的應變測量。數(shù)字圖像相關(guān)法利用數(shù)字圖像處理技術(shù)來分析物體表面的圖像信息,從而實現(xiàn)應變的測量。激光散斑法利用激光散斑圖樣的變化來測量應變,適用于表面應變的測量。光纖光柵傳感器是一種利用光纖光柵的光學效應來測量應變的方法,它可以實現(xiàn)高精度的應變測量。高速光學數(shù)字圖像相關(guān)測量物體的表面特性如粗糙度、反射率和形狀會影響光的傳播和反射,從而影響光學應變測量的準確性。

全場三維非接觸測量裝置,光學非接觸應變測量

金屬應變計的實際應變計因子可以通過傳感器廠商或相關(guān)文檔獲取,通常約為2。實際上,應變測量的量很少大于幾個毫應變(10?3),因此必須精確測量電阻極微小的變化。例如,如果測試樣本的實際應變?yōu)?00毫應變,應變計因子為2的應變計可檢測的電阻變化為2 * (500 * 10??) = 0.1%。對于120Ω的應變計,變化值只為0.12Ω。為了測量如此小的電阻變化,應變計采用基于惠斯通電橋的配置概念。常見的惠斯通電橋由四個相互連接的電阻臂和激勵電壓VEX組成。當應變計與被測物體一起安裝在電橋的一個臂上時,應變計的電阻值會隨著應變的變化而發(fā)生微小的變化。這個微小的變化會導致電橋的電壓輸出發(fā)生變化,進而可以通過測量輸出電壓的變化來計算應變的大小。光學非接觸應變測量是一種新興的測量技術(shù),它利用光學原理來測量材料的應變。這種技術(shù)可以實現(xiàn)非接觸、高精度和高靈敏度的應變測量。光學非接觸應變測量通常使用光纖光柵傳感器或激光干涉儀等設(shè)備來測量材料表面的位移或形變,從而間接計算出應變的大小。

隨著礦井開采逐漸向深部延伸,原巖應力和構(gòu)造應力不斷上升,這對于研究圍巖力學特性、地應力分布異常以及巖巷支護設(shè)計至關(guān)重要。為了深入探究深部巖巷圍巖的變形破壞特征,一支研究團隊采用了XTDIC三維全場應變測量系統(tǒng)和相似材料模擬方法。該研究團隊通過模擬不同開挖過程和支護作用對深部圍巖變形破壞的影響,實時監(jiān)測了模型表面的應變和位移。他們使用了XTDIC三維全場應變測量系統(tǒng),該系統(tǒng)能夠?qū)崟r捕捉圍巖表面的應變情況,并將其轉(zhuǎn)化為數(shù)字信號進行分析。通過這種方法,研究團隊能夠準確地觀察到圍巖在不同開挖和支護條件下的變形情況。研究團隊還使用了相似材料模擬方法,將實際的巖石圍巖模型轉(zhuǎn)化為相似材料模型進行實驗。他們根據(jù)實際的巖石力學參數(shù),選擇了相應的相似材料,并通過模擬開挖和支護過程,觀察圍巖的變形和破壞情況。通過分析不同支護設(shè)計和開挖速度對圍巖變形破壞規(guī)律的影響,研究團隊為深入研究巖爆的發(fā)生和破壞規(guī)律提供了指導依據(jù)。他們發(fā)現(xiàn),合理的支護設(shè)計和適當?shù)拈_挖速度可以有效地減少圍巖的變形和破壞,從而降低巖爆的風險。光學非接觸應變測量適用于對被測物體要求非破壞性的應用,如珍貴文物的保護和生物組織的應變測量。

全場三維非接觸測量裝置,光學非接觸應變測量

建筑物的變形測量需要根據(jù)確定的觀測周期和總次數(shù)進行。觀測周期的確定應遵循能夠系統(tǒng)反映實際建筑物變形變化過程的原則,同時不能遺漏變化的時間點。此外,還需要綜合考慮單位時間內(nèi)的變形量大小、變形特征、觀測精度要求以及外部因素的影響。對于單層網(wǎng),觀測點和控制點的觀測應根據(jù)變形觀測周期進行。而對于兩級網(wǎng)絡(luò),需要根據(jù)變形觀測周期來觀測聯(lián)合測量的觀測點和控制點。對于控制網(wǎng)絡(luò)的部分,可以根據(jù)重新測量周期來進行觀察。控制網(wǎng)的復測周期應根據(jù)測量目的和點的穩(wěn)定性來確定。一般情況下,建議每六個月進行一次復測。在施工過程中,可以適當縮短觀測時間間隔,待點穩(wěn)定后則可以適當延長觀測時間間隔??傊?,建筑物變形測量需要根據(jù)確定的觀測周期和總次數(shù)進行,觀測周期的確定應綜合考慮多個因素。以上是關(guān)于光學非接觸應變測量的相關(guān)內(nèi)容。光學應變測量技術(shù)的非接觸性消除了傳感器與被測物體之間的物理接觸,減少了測量誤差的可能性。高速光學數(shù)字圖像相關(guān)測量

在光學非接觸應變測量中,選擇合適的測量范圍和測量精度是實現(xiàn)準確測量的關(guān)鍵。全場三維非接觸測量裝置

光學非接觸應變測量是一種利用光學原理來測量物體表面應變的方法。其中,全息干涉術(shù)和激光散斑術(shù)是兩種常用的技術(shù)。全息干涉術(shù)利用全息干涉的原理來測量物體表面的應變。它通過將物體表面的應變信息轉(zhuǎn)化為光的干涉圖案來實現(xiàn)測量。具體而言,當光線照射到物體表面時,光線會被物體表面的形變所影響,從而產(chǎn)生干涉圖案。通過對干涉圖案的分析,可以得到物體表面的應變分布情況。全息干涉術(shù)具有高精度、高靈敏度和非接觸的特點,因此在材料研究、結(jié)構(gòu)分析和工程測試等領(lǐng)域得到普遍應用。激光散斑術(shù)是另一種常用的光學非接觸應變測量方法。它利用激光光束照射到物體表面,通過物體表面的散射光產(chǎn)生散斑圖案。物體表面的應變會導致散斑圖案的變化,通過對散斑圖案的分析,可以得到物體表面的應變信息。激光散斑術(shù)具有簡單、快速、非接觸的特點,適用于對物體表面應變進行實時監(jiān)測和測量。全場三維非接觸測量裝置