當一二次磁勢平衡時,環(huán)形鐵芯C1及C2磁勢平衡方程滿足:NPIP+NFIF=0(3-1)由式(3-1)可知,當系統(tǒng)達到平衡時,一次電流與反饋電流成比例,比例系數(shù)為NF/NP。即通過測量反饋繞組中的電流幅值大小即可對一次交直流電流幅值進行測量,反饋電流的相位與一次電流相位相反。實際新型交直流傳感器通過測量串接在反饋繞組中的終端測量電阻RM上的終端測量電壓信號VRM間接完成反饋電流測量,終端測量電壓信號VRM與一次電流IP滿足:I=IF=NNR(3-2)式(3-2)表明終端測量電壓信號VRM與一次電流IP成比例,其中負號表示兩者相位相反。同時根據(jù)式(3-2)可得新型交直流電流傳感器的靈敏度SD1為...
磁通門傳感器是一種根據(jù)電磁感應現(xiàn)象加以改造的變壓器式的器件,只是它的變壓器效應是用于對外界被測磁場進行調(diào)制。它的基本原理可以由法拉第電磁感應定律進行解釋。磁通門傳感器是采用某些高導磁率,低矯頑力的軟磁材料(例如坡莫合金)作為磁芯,磁芯上纏繞有激勵線圈和感應線圈。在激勵線圈中通入交變電流,則在其產(chǎn)生的激勵磁場的作用下,感應線圈中產(chǎn)生由外界環(huán)境磁場調(diào)制而成的感應電勢。該電勢包含了激勵信號頻率的各個偶次諧波分量,通過后續(xù)的各種傳感器信號處理電路,利用諧波法對感應電勢進行檢測處理,使得該電勢與外界被測磁場成正比。又因為磁通門傳感器的磁芯只有工作在飽和狀態(tài)下才能獲得較大的信號,所以該傳感器又稱為磁飽和傳...
假設功率放大電路性能優(yōu)越,在設計檢測帶寬內(nèi)閉環(huán)增益大,輸出紋波電流小,輸出穩(wěn)定。則G3可用其閉環(huán)增益KPA表示其傳遞函數(shù)為:G3=KPA(3-15)電流反饋模塊輸入信號為反饋繞組WF兩端電壓信號,即功率放大電路輸出電壓信號。其輸出信號為流過終端測量電阻RM的反饋電流信號IF。根據(jù)上述關系,可推導電流反饋模塊G4的傳遞函數(shù)為:G4==RM+ZF1RM+jwLFlcRMlc+jwμ0μeN2F(2Sc)(3-16)式(3-16)中,ZF為反饋繞組WF的復阻抗,忽略其電阻值,用反饋繞組的激磁感抗jwLF表示;根據(jù)激磁電感與磁路參數(shù)關系進一步對公式進行化簡,式中l(wèi)c為合成鐵芯C12的平均磁路長度,μe...
電壓傳感器具有高精度、寬測量范圍、快速響應、寬工作溫度范圍、低功耗、高線性度、良好的穩(wěn)定性、安全可靠、易于安裝和使用、多種輸出接口、可編程性和耐用性等優(yōu)勢。這些優(yōu)勢使得電壓傳感器成為電力系統(tǒng)和工業(yè)自動化等領域中不可或缺的重要設備,良好的穩(wěn)定性:電壓傳感器通常具有較好的長期穩(wěn)定性,能夠在長時間使用中保持較高的測量準確度,不易受外界環(huán)境因素的影響。安全可靠:電壓傳感器在設計和制造過程中通??紤]了安全性和可靠性要求,能夠提供安全可靠的電壓測量解決方案。易于安裝和使用:電壓傳感器通常具有簡單的安裝和使用方式,可以方便地與其他設備進行連接和集成,提供便捷的電壓測量功能。磁場穩(wěn)定性:由于激勵磁場是持續(xù)振蕩...
不同于傳統(tǒng)電流比較儀的是,新型交直流電流傳感器改進了鐵芯結構及信號解調(diào)電 路, 增加了環(huán)形鐵芯 C2 及對其進行激磁的是反向放大器 U2,其與環(huán)形鐵芯 C1 及采樣電 阻 RS1 構成反向激磁的自激振蕩磁通門傳感器,其作用是用于抵消激磁電壓在其他繞組 中產(chǎn)生的電磁感應紋波電流,低通濾波器 LPF 及高通濾波器 HPF 的配合使用將對采樣 信號的解調(diào)進行優(yōu)化。設計的新型交直流電流傳感器為閉環(huán)零磁通交直流電流測量系統(tǒng)。其中交直流 電流不平衡磁勢檢測由零磁通交直流檢測器測量, 交流及直流不平衡磁勢均在同一通道 完成信號解調(diào)及信號處理。如果沒有對于鐵磁材料磁導率和飽和特性的研究、沒有低矯頑力高磁導率軟...
式(3-3)表明新型交直流電流傳感器靈敏度與終端測量電阻 RM 阻值成正比,與 反饋繞組匝數(shù) NF 成反比。負號沒有實際意義,表示輸出與輸入信號反相。同時,由于環(huán)形鐵芯 C1 與環(huán)形鐵芯 C2 工作在完全相反的激磁狀態(tài),采樣電阻 RS2 上的交直流采樣電壓信號 VRS2 中的交直流電流信號理論上與 VRS1 幅值相同,而方向相 反。下一節(jié)將具體介紹反向激磁的環(huán)形鐵芯 C2 在系統(tǒng)中的具體作用。新型交直流傳感器是基于 PI 比例積分放大電路進行誤差控制的,理論上比例積分 環(huán)節(jié)將會保證系統(tǒng)穩(wěn)態(tài)誤差為 0,而實際上閉環(huán)交直流傳感器工作的電磁環(huán)境更為復雜, 在輸入端除了一次繞組 WP 中交直流...
當一次側存在直流分量時,傳統(tǒng)交流電流互感器計量失準。當一次側存在交流分量時,傳統(tǒng)直流電流互感器鐵芯激磁狀態(tài)受到影響,終導致直流計量失準。已有方案中基于自激振蕩磁通門技術的電流傳感器,并未對交直流同時測量時交直流電流互感器性能進行測試[9,15]。目前也缺乏對交直流電流互感器校驗的相關章程,因此試驗時結合等44安匝方法,通過同時輸入交流電流和直流電流、且直流分量占比可調(diào)的方式,測試交直流下新型交直流電流互感器直流測量性能、交流測量性能。從國家到地方層面,都出臺了相應的政策措施,支持新型儲能產(chǎn)業(yè)的發(fā)展。鄭州高線性度電流傳感器現(xiàn)貨電流傳感器的工作原理有多種,其中一種是通過分流器來工作的。分流器其實是...
通過對自激振蕩磁通門傳感器的起振原理及正反向直流測量時激磁電流變化過程進行詳細的分析,自激振蕩磁通門電路測量時具有如下特點:(1)自激振蕩磁通門起振時需要滿足大充電電流Im大于鐵芯C1激磁電流閾值Ith,即滿足Im>Ith。(2)鐵芯C1工作在正負交替飽和的周期性狀態(tài)。(3)當Ip=0時,采樣電壓VRs一個周波內(nèi)平均值為0;當Ip>0時,采樣電壓VRs一個周波內(nèi)平均值為負;當Ip<0時,采樣電壓VRs一個周波內(nèi)平均值為正;由上述分析可知,采樣電壓的平均值大小反映了一次電流的量值大小和方向。接下來本文將對自激振蕩磁通門的數(shù)學模型進行詳細的推導,探究采樣電壓大小與一次電流的定量關系,探究交直流情況...
t3時刻起鐵芯C1工作點回移至線性區(qū)A,非線性電感L仍繼續(xù)放電,此時激磁感抗ZL較大,激磁電流緩慢由I+th繼續(xù)降低,直至在t4時刻降為0。0~t4期間,構成了激磁電流iex的正半周波TP。t4時刻起鐵芯C1工作點開始由線性區(qū)A先負向飽和區(qū)B移動,在t4~t5期間,鐵芯C1仍工作于線性區(qū)A,此時輸出方波激磁電壓仍為VO=VOL,因此電路開始對非線性電感L反向充電,此時激磁感抗ZL未變,激磁電流iex開始由0反向緩慢增大,一直增長至反向激磁電流閾值I-th。廣東深圳已打造成為全國重要的鋰電池關鍵材料產(chǎn)業(yè)集群。珠海、廣州、惠州等地鋰電池產(chǎn)業(yè)蓬勃發(fā)展。遼寧漏電保護電流傳感器現(xiàn)貨基于自激振蕩磁通門技術...
根據(jù)自激振蕩磁通門原理可知,通過在一個周波內(nèi)對激磁電流 iex 積分計算平均激 磁電流, 再乘以采樣電阻阻值可獲取激磁電壓平均值, 即可獲得與一次電流相關的電壓 信號。但由于式(2-23)復雜, 積分計算方法數(shù)據(jù)量龐大。同時根據(jù)分析 可知, 由于一次電流 Ip 的影響, 在不同一次電流下, 單個周期內(nèi)正半周波與負半周波將會發(fā)生滯后或超前的現(xiàn)象, 從激磁電壓周期變化觀點來看, 當 Ip=0 時, 采樣電壓 VRs 一 個周波內(nèi)正向周波時間等于負向周波時間,即 TP=TN ;當 Ip>0 時,采樣電壓 VRs 一個周 波內(nèi)正向周波時間小于負向周波時間,即 TP
無錫納吉伏公司基于鐵磁材料的三折線分段線性化模型,對自激振蕩磁通門傳感器起振原理及數(shù)學模型進行推導,并探討了其在直流測量及交直流檢測的適應性,針對自激振蕩磁通門傳感器的各項性能指標,包括線性度、量程、靈敏度、帶寬、穩(wěn)定性等進行了較為深入的研究。(2)結合傳統(tǒng)電流比較儀閉環(huán)結構,設計了基于雙鐵芯結構自激振蕩磁通門傳感器的新型交直流電流傳感器,并對其解調(diào)電路進行相應改進。通過磁勢平衡方程及相關電路理論,分析了改進結構及解調(diào)電路對傳統(tǒng)單鐵芯自激振蕩磁通門傳感器線性度的影響。并通過構建新型交直流電流傳感器穩(wěn)態(tài)誤差數(shù)學模型,明確了交直流穩(wěn)態(tài)誤差與傳感器電路設計參數(shù)及雙鐵芯結構零磁通交直流檢測器之間的定性...
磁通門電流傳感器在MRI(磁共振成像)中有廣泛的應用。MRI是一種非侵入性且無輻射的醫(yī)學成像技術,通過使用強磁場和無線電波來生成身體內(nèi)部的高分辨率影像。當磁芯被周期性變化的激勵磁場作用時,磁芯的狀態(tài)便會周期性地磁化至正負飽和狀態(tài),并在其間往返。周期性的往返于兩個穩(wěn)態(tài)點(勢能函數(shù)的低點)的這一過程可以用雙穩(wěn)態(tài)勢能函數(shù)來表示。磁通門電流傳感器被用于監(jiān)測梯度線圈的電流變化,以確保梯度線圈的準確控制和調(diào)節(jié),從而獲得高質(zhì)量的圖像。 射頻線圈控制:MRI系統(tǒng)使用射頻線圈來發(fā)送和接收無線電波信號,以圖像化身體結構和組織。磁通門電流傳感器被用于監(jiān)測射頻線圈的電流變化,以幫助調(diào)節(jié)射頻線圈的功率和頻率,確保信號的...
當測量交直流電流時,環(huán)形鐵芯C1處于正向激磁狀態(tài),在采樣電阻RS1上將產(chǎn)生正比于一次交直流電流的有用低頻信號VL1,包括直流分量信號Vdc及工頻交流信號Vfac,同時也會產(chǎn)生高頻無用交流分量VH1。由于環(huán)形鐵芯C2激磁狀態(tài)與鐵芯C1完全相反,因此在采樣電阻RS2上可以檢測到反向的低頻信號VL2及反向的無用交流分量VH2。對于環(huán)形鐵芯C2而言,其與環(huán)形鐵芯C1反相端支路對稱,而缺少正向端電路部分,因此環(huán)形鐵芯C2在振蕩過程中激磁電流的平均電流與一次側交直流電流線性關系較差,低頻信號VL2為無用低頻信號。根據(jù)上述分析,可以得到合成信號VR12表達式如下:VR12=VR+VR=VL1+(VH1+VH...
巨磁阻(GMR)效應在微小磁場測量領域實現(xiàn)了創(chuàng)新性的改變,尤其在利用渦流傳感器進行無損檢測方面取得了很大的進展。巨磁阻傳感器具有低功耗、尺寸小、高靈敏度以及頻率與靈敏度的不相關性等特點;同霍爾傳感器相同,巨磁阻芯片是傳感器的主要組成部分,一般也容易受到環(huán)境中磁場的干擾,不適用于電磁環(huán)境復雜的環(huán)境,對復雜波形電流也不能做出準確的檢測。磁通門傳感器(Fluxgatecurrentsensor),一開始主要用于弱磁場的檢測,比如地磁場檢測、鐵礦石檢測、位移檢測和管道泄漏檢測等方面。隨著這種技術的發(fā)展,磁通-2-門傳感器廣泛應用于太空探測和地質(zhì)勘探中。磁通門電流傳感器的結構類似霍爾電流傳感器,是基于檢...
無錫納吉伏公司利用比例直流疊加法模擬一次交直流電流,設計了新型交直流電流傳感器計量 性能測試方案。對所設計的新型交直流電流傳感器進行了交流電流計量性能、直流電流 計量性能以及交直流同時測量時交直流計量性能試驗, 試驗結果表明, 所研制新型交直 流電流傳感器交直流測量誤差均小于 0.05 級電流互感器誤差限值,說明新型交直流電 流傳感器結構及理論正確。其成本低、 簡單結構,與同類產(chǎn)品相比具有更高的性價比。 同時所研制的新型交直流電流傳感器方案交流測量與直流測量互不干擾, 可應用于交流 測量領域, 直流測量領域, 交直流同時測量領域及抗直流互感器及較低精度交直流電流 傳感器檢定及校驗領域。關鍵材...
一階低通濾波器及高通濾波器的截止頻率f0為:f0=采樣電阻Rs2后接高通濾波器用于獲取高于50Hz的反向激磁電流中無用高頻分量。將高通濾波器HPF濾波后信號V’Rs2與采樣電阻Rs1上電壓信號疊加后合成電壓信號VR12完成信號解調(diào),VR12中有用低頻信號為直流分量及工頻50Hz交流,故低通濾波器LPF截止頻率應大于50Hz,通過參數(shù)設計,實際LPF的截止頻率設計為59Hz。設計HPF的截止頻率為59Hz,以完成對采樣電阻Rs2上的激磁電壓信號的采樣并通過HPF取出其反向無用高頻分量。產(chǎn)能快速釋放以及技術迭代加速等多重因素影響下,我國儲能電池系統(tǒng)和EPC中標價格持續(xù)下降。西安漏電保護電流傳感器價...
根據(jù)自激振蕩磁通門原理可知,通過在一個周波內(nèi)對激磁電流 iex 積分計算平均激 磁電流, 再乘以采樣電阻阻值可獲取激磁電壓平均值, 即可獲得與一次電流相關的電壓 信號。但由于式(2-23)復雜, 積分計算方法數(shù)據(jù)量龐大。同時根據(jù)分析 可知, 由于一次電流 Ip 的影響, 在不同一次電流下, 單個周期內(nèi)正半周波與負半周波將會發(fā)生滯后或超前的現(xiàn)象, 從激磁電壓周期變化觀點來看, 當 Ip=0 時, 采樣電壓 VRs 一 個周波內(nèi)正向周波時間等于負向周波時間,即 TP=TN ;當 Ip>0 時,采樣電壓 VRs 一個周 波內(nèi)正向周波時間小于負向周波時間,即 TP
電源系統(tǒng)中在一些情況下會產(chǎn)生很大的脈沖電流,脈沖電流的存在時間短,但是會對整個電源系統(tǒng)造成極大的損害。此時的電流的 波形的屬于復雜的電流波形,同時電流波形變化劇烈。無錫納吉伏公司針對這樣的情況,設計了新型電流傳感器。為了有效的防止脈沖電流對開關電源系統(tǒng)造成的損害,必須有效快速的檢測脈沖電流。與此同時還需要對開關電源中正常工作時的交直流電流進行精確的測量,以保證對電源系統(tǒng)中的工作狀態(tài)的控制。實際的電源系統(tǒng)中,脈沖電流要比正常工作狀態(tài)下的交直流電流高出許多,甚至相差幾個數(shù)量級,一般的電流傳感器不能既保證對正常狀態(tài)下的交直流的測量精度,同時又可以快速精確的測量突發(fā)的脈沖電流,所以研究可以同時測量脈沖...
通過對自激振蕩磁通門傳感器的起振原理及正反向直流測量時激磁電流變化過程進行詳細的分析,自激振蕩磁通門電路測量時具有如下特點:(1)自激振蕩磁通門起振時需要滿足大充電電流Im大于鐵芯C1激磁電流閾值Ith,即滿足Im>Ith。(2)鐵芯C1工作在正負交替飽和的周期性狀態(tài)。(3)當Ip=0時,采樣電壓VRs一個周波內(nèi)平均值為0;當Ip>0時,采樣電壓VRs一個周波內(nèi)平均值為負;當Ip<0時,采樣電壓VRs一個周波內(nèi)平均值為正;由上述分析可知,采樣電壓的平均值大小反映了一次電流的量值大小和方向。接下來本文將對自激振蕩磁通門的數(shù)學模型進行詳細的推導,探究采樣電壓大小與一次電流的定量關系,探究交直流情況...
通過對自激振蕩磁通門傳感器的起振原理及正反向直流測量時激磁電流變化過程進行詳細的分析,自激振蕩磁通門電路測量時具有如下特點:(1)自激振蕩磁通門起振時需要滿足大充電電流Im大于鐵芯C1激磁電流閾值Ith,即滿足Im>Ith。(2)鐵芯C1工作在正負交替飽和的周期性狀態(tài)。(3)當Ip=0時,采樣電壓VRs一個周波內(nèi)平均值為0;當Ip>0時,采樣電壓VRs一個周波內(nèi)平均值為負;當Ip<0時,采樣電壓VRs一個周波內(nèi)平均值為正;由上述分析可知,采樣電壓的平均值大小反映了一次電流的量值大小和方向。接下來本文將對自激振蕩磁通門的數(shù)學模型進行詳細的推導,探究采樣電壓大小與一次電流的定量關系,探究交直流情況...
(1)交流電流對直流電流測量精度的影響測試交流分量對直流測量的影響時,在交直流傳感器上均勻繞制直流繞組,其匝數(shù)Nd=30,分別測試在25A交流和250A交流時,交直流電流傳感器對于直流電流的測量誤差。紅色曲線為0.05級直流電流互感器比差限值曲線,黃色曲線為250A交流下直流誤差曲線,黑色曲線為25A交流下直流誤差曲線。由圖5-6可知,在25A及250A交流分量下,直流測量仍滿足0.05級直流誤差限值。交流分量大小對新型交直流電流傳感器直流測量誤差無明顯影響。因此,本文設計的新型交直流電流傳感器可完成不同交流分量下直流電流高精度測量。(2)直流分量對交流電流測量精度的影響在實驗過程中,受限于傳...
可以觀察到基于鐵芯C1磁化曲線的對稱性及激磁方波電壓的對稱性,激磁電流波形正向峰值與反向峰值電流滿足I+m=-I-m=Im=ρVOH/RS,且鐵芯C1工作點在線性區(qū)與飽和區(qū)之間周期性變化,因此當自激振蕩磁通門傳感器一次測量電流為0時,激磁電流iex在單個周期內(nèi)正負半波波形中心對稱,即在單個周期內(nèi)激磁電流iex平均值為0,對于信號采樣而言,即在RS上的采樣電壓信號滿足采樣電壓VRS平均值為0。接下來對一次電流為正向及反向直流時的自激振蕩磁通門傳感器振蕩過程進行分析。當IP>0時,激磁電壓波形Vex及激磁電流iex波形如圖2-4中藍色曲線所示,圖中紅色曲線為IP=0時激磁電流波形。新型儲能產(chǎn)業(yè)的發(fā)...
(b)根據(jù)式(2-33)選取低磁飽和強度BS,降低鐵芯C1截面面積或增大激磁繞組匝數(shù)N1,可有效降低鐵芯C1激磁飽和電流閾值Ith,以便于滿足假設1、3中Ith<
新型交直流傳感器的環(huán)節(jié)是零磁通交直流檢測器,其線性度制約了整體閉環(huán)測量方案的精度。本文設計的零磁通交直流檢測器如圖3-1所示。其包括環(huán)形鐵芯C1和C2,及激磁繞組W1,激磁繞組W2和分壓電阻R1,R2。比較放大器U1,單位反向放大器U2,采樣電阻RS1和RS2。首先確定磁芯尺寸及磁性材料選擇,磁性材料各項參數(shù)直接影響到所設計零磁通交直流檢測器的靈敏度,并對電路設計參數(shù)有所限制[57]。根據(jù)第2章分析可知,鐵芯材料需要選擇非線性程度高,即磁導率高,磁飽和強度高,矯頑力低的磁性材料。將有助于提高能源利用效率、降低成本、增強能源安全等。金華動力電池測試電流傳感器服務電話新型能源、新型能源產(chǎn)品、先進設...
無錫納吉伏公司結合自激振蕩磁通門技術與傳統(tǒng)電流比較儀結構,設計了新型交直流電流傳感器。通過分析新型交直流傳感器的誤差來源,對傳統(tǒng)單鐵芯自激振蕩磁通門傳感器進行改進,提出了雙鐵芯結構自激振蕩磁通門傳感器,同時對解調(diào)電路進行了優(yōu)化。并建立了新型交直流電流傳感器穩(wěn)態(tài)誤差模型,為優(yōu)化設計參數(shù)以減小交直流比例誤差提供理論依據(jù)。依據(jù)上述研究,通過鐵芯選型、繞組設計、零磁通交直流檢測器電路、誤差控制電路、電流反饋電路和電磁屏蔽設計,研制了一臺500A雙鐵芯三繞組低成本交直流電流傳感器樣機。激勵磁場振蕩產(chǎn)生一個交變的磁場,這個交變的磁場會在被測導體中感應出電流。遼寧漏電保護電流傳感器發(fā)展現(xiàn)狀根據(jù)自激振蕩磁通門...
磁通門傳感器是一種根據(jù)電磁感應現(xiàn)象加以改造的變壓器式的器件,只是它的變壓器效應是用于對外界被測磁場進行調(diào)制。它的基本原理可以由法拉第電磁感應定律進行解釋。磁通門傳感器是采用某些高導磁率,低矯頑力的軟磁材料(例如坡莫合金)作為磁芯,磁芯上纏繞有激勵線圈和感應線圈。在激勵線圈中通入交變電流,則在其產(chǎn)生的激勵磁場的作用下,感應線圈中產(chǎn)生由外界環(huán)境磁場調(diào)制而成的感應電勢。該電勢包含了激勵信號頻率的各個偶次諧波分量,通過后續(xù)的各種傳感器信號處理電路,利用諧波法對感應電勢進行檢測處理,使得該電勢與外界被測磁場成正比。又因為磁通門傳感器的磁芯只有工作在飽和狀態(tài)下才能獲得較大的信號,所以該傳感器又稱為磁飽和傳...
電力電子技術是國民經(jīng)濟發(fā)展以及國家重要領域的重要技術支持,是信息與能源 轉換的結合,是實現(xiàn)節(jié)能環(huán)保和提高人民生活質(zhì)量的重要技術手段。在完成現(xiàn)今國家 “發(fā)展新能源”和“節(jié)能減排”基本國策的過程中起著極其關鍵的作用。新能源、 節(jié)能環(huán)保、新能源汽車、新材料、生物、裝備制造、新一代信息技術等產(chǎn)業(yè)的發(fā) 展,都離不開電力電子技術的有力保障。電力電子技術是智能電網(wǎng)的助推器,以靈活交流輸電(FACTS)技術、高壓直流(HVDC)輸電技術、輕型高壓直流輸電技術、定制 電力(custom power)技術和能量轉換技術為特點的先進電力電子技術越來越多地應用于國家電網(wǎng)中,它是創(chuàng)建安全可靠智能電網(wǎng)的關鍵技術和方法。電...
傳統(tǒng)磁通門電流傳感器常用偶次諧波檢測法來檢測被測電流值。具體的數(shù)學模型以及測量均通過在環(huán)形磁芯上環(huán)繞激磁繞組和感應繞組來實現(xiàn)。根據(jù)法拉第電磁感應定律可知,感應繞組產(chǎn)生的感應電動勢。激勵磁場的瞬時值方向呈周期性變化,磁芯的磁導率隨激勵磁場的改變而變化,但是沒有正負之分。偶次諧波檢測法是磁通門傳感器檢測方法中比較直白,比較簡單也是比較原始的測量方法,這一方法原理簡單,易于理解。但是由于在提取偶次諧波過程中需要進行選頻放大、相敏整流以及積分環(huán)節(jié),檢測電路復雜,精度較低,溫漂較大。對于工業(yè)應用來說,偶次諧波解調(diào)電路具有復雜性,同時受到磁材料的工業(yè)性能限制,使用這種傳感器費用較高。磁通門電流傳感器可以用...
(b)根據(jù)式(2-33)選取低磁飽和強度BS,降低鐵芯C1截面面積或增大激磁繞組匝數(shù)N1,可有效降低鐵芯C1激磁飽和電流閾值Ith,以便于滿足假設1、3中Ith<
根據(jù)自激振蕩磁通門原理可知,通過在一個周波內(nèi)對激磁電流 iex 積分計算平均激 磁電流, 再乘以采樣電阻阻值可獲取激磁電壓平均值, 即可獲得與一次電流相關的電壓 信號。但由于式(2-23)復雜, 積分計算方法數(shù)據(jù)量龐大。同時根據(jù)分析 可知, 由于一次電流 Ip 的影響, 在不同一次電流下, 單個周期內(nèi)正半周波與負半周波將會發(fā)生滯后或超前的現(xiàn)象, 從激磁電壓周期變化觀點來看, 當 Ip=0 時, 采樣電壓 VRs 一 個周波內(nèi)正向周波時間等于負向周波時間,即 TP=TN ;當 Ip>0 時,采樣電壓 VRs 一個周 波內(nèi)正向周波時間小于負向周波時間,即 TP