2023年1月,微軟必應搜索(MicrosoftBingSearch)推出了一項創(chuàng)新的功能,即聊天模式(ChatMode)。這項功能允許用戶通過聊天框與必應搜索進行交互,獲取信息、娛樂、創(chuàng)意等各種內容。必應搜索利用了先進的自然語言處理(NLP)和生成技術,能夠理解和回答用戶的各種問題和請求,同時提供相關的網(wǎng)頁搜索結果、建議、廣告等。必應搜索還能夠根據(jù)用戶的選擇,切換不同的模式,如平衡模式(BalancedMode)、創(chuàng)意模式(CreativeMode)和精確模式(PreciseMode),以滿足用戶的不同需求和偏好。必應搜索的聊天模式是AIGC領域的一個突破,展示了人工智能與人類交流的可能性和潛力。三.AIGC中心技術隨著自然語言處理(NLP)技術和擴散模型(DiffusionModel)的發(fā)展,人工智能已經(jīng)不再作為內容創(chuàng)造的輔助工具,而是可以創(chuàng)造生成內容。自然語言處理技術是實現(xiàn)人與計算機之間如何通過自然語言進行交互的手段。它融合了語言學、計算機學和數(shù)學,使得計算機可以理解自然語言,提取信息并自動翻譯、分析和處理。 人工智能技術接受檢驗 在"沙漠風暴"行動中軍方的智能設備經(jīng)受了打仗的檢驗。泉州谷歌AIGC概念
AIGC未來趨勢2023年無疑是AIGC元年,隨著人工智能技術的不斷進步和創(chuàng)新,AIGC將會涵蓋更普遍的主題和領域,應用場景拓展將進一步拓展,AIGC的未來充滿無限可能。在未來,AIGC技能將成為每位職場人生存于職場的必備技能,也將成為職場競爭力的重要標志,具備這些技能的人才可以更好地適應新興行業(yè)和新興崗位,并且有更多機會獲得高薪、高福利、高晉升機會,職場人都將借助AI進行更高效的工作,將幫助職場人士更好地應對未來職場的挑戰(zhàn)。但是,要想真正掌握AIGC技能并在職場中取得成功,并不是一件容易的事情。首先你需要掌握AI人工智能軟件的應用技巧,如何讓AI人工智能軟件為你所用,幫助你進行工作,提升工作效率;其次需要具備良好的溝通與團隊合作能力,在與其他部門或同事合作時可以更好地運用AI技術解決問題;結尾還需要具備創(chuàng)新思維和敢于嘗試新事物的勇氣,在不斷嘗試中積累經(jīng)驗并不斷提升自己。想要具備以上能力與技巧,由娛樂資本論與華龍數(shù)字藝術實訓基地強強聯(lián)手,應勢而生,隆重推出一門新課程——“AIGC新媒體運營”訓練營課程,是你的選擇。 漳州科技AIGC前景機器真的可以思考嗎?人的思維只是一個復雜的計算機程序嗎?
AIGC的產(chǎn)品形態(tài)有哪些?1、基礎層(模型服務)基礎層為采用預訓練大模型搭建的基礎設施。由于開發(fā)預訓練大模型技術門檻高、投入成本高,因此,該層主要由少數(shù)頭部企業(yè)或研發(fā)機構主導。如谷歌、微軟、Meta、OpenAI、DeepMind、?;A層的產(chǎn)品形態(tài)主要包括兩種:一種為通過受控的api接口收取調用費;另一種為基于基礎設施開發(fā)專業(yè)的軟件平臺收取費用。2、中間層(2B)該層與基礎層的特別主要區(qū)別在于,中間層不具備開發(fā)大模型的能力,但是可基于開源大模型等開源技術進行改進、抽取或模型二次開發(fā)。該層為在大模型的基礎上開發(fā)的場景化、垂直化、定制化的應用模型或工具。在AIGC的應用場景中基于大模型抽取出個性化、定制化的應用模型或工具滿足行業(yè)需求。如基于開源的StableDiffusion大模型所開發(fā)的二次元風格圖像生成器,滿足特定行業(yè)場景需求。中間層的產(chǎn)品形態(tài)、商業(yè)模式與基礎層保持一致,分別為接口調用費與平臺軟件費。3、應用層(2C)應用層主要基于基礎層與中間層開發(fā),面向C端的場景化工具或軟件產(chǎn)品。應用層更加關注用戶的需求,將AIGC技術切實融入用戶需求,實現(xiàn)不同形態(tài)、不同功能的產(chǎn)品落地??梢酝ㄟ^網(wǎng)頁、小程序、群聊、app等不同的載體呈現(xiàn)。
諸如我們熟知的聊天對話模型ChatGPT,基于。計算機視覺(CV)預訓練大模型自然語言處理(NLP)預訓練大模型多模態(tài)預訓練大模型微軟Florence(SwinTransformer)谷歌Bert/LaMDA/PaLMOpenAI的CLIP/DALL-EOpenAI的GPT-3/ChatGPT微軟的GLIPStabilityAI的StableDiffusion(1)計算機視覺(CV)預訓練大模型FlorenceFlorence是微軟在2021年11月提出的視覺基礎模型。Florence采用雙塔Transformer結構。文本采用12層Transformer,視覺采用SwinTransformer。通過來自互聯(lián)網(wǎng)的9億圖文對,采用UnifiedContrasiveLearning機制將圖文映射到相同空間中。其可處理的下游任務包括:圖文檢索、圖像分類、目標檢測、視覺對答以及動作識別。(2)自然語言處理(NLP)預訓練大模型LaMDALaMDA是谷歌在2021年發(fā)布的大規(guī)模自然語言對話模型。LaMDA的訓練過程分為預訓練與微調兩步。在預訓練階段,谷歌從公共數(shù)據(jù)數(shù)據(jù)中收集了,feed給LaMDA,讓其對自然語言有初步認識。到這一步通過輸入prompt能夠預測上下文,但是這種回答往往不夠準確,需要二次調優(yōu)。谷歌的做法是讓模型根據(jù)提問輸出多個回答,將這些回答輸入到分類器中,輸出回答結果的安全性Safety,敏感性Sensible。AI可以從不確定的條件作出決策;還有神經(jīng)網(wǎng)絡,被視為實現(xiàn)人工智能的可能途徑。
應用:在擴散模型(diffusionmodel)的基礎上產(chǎn)生了多種令人印象深刻的應用,比如:圖像超分、圖像上色、文本生成圖片、全景圖像生成等。如下圖,中間圖像作為輸入,基于擴散模型,生成左右視角兩張圖,輸入圖像與生成圖像共同拼接程一張全景圖像。生成全景圖像產(chǎn)品與模型:在擴散模型的基礎上,各公司與研究機構開發(fā)出的代替產(chǎn)品如下:DALL-E2(OpenAI文本生成圖像,圖像生成圖像)DALL-E2由美國OpenAI公司在2022年4月發(fā)布,并在2022年9月28日,在OpenAI網(wǎng)站向公眾開放,提供數(shù)量有限的無償圖像和額外的購買圖像服務。Imagen(GoogleResearch文本生成圖像)Imagen是2022年5月谷歌發(fā)布的文本到圖像的擴散模型,該模型目前不對外開放。用戶可通過輸入描述性文本,生成圖文匹配的圖像。StableDiffusion(StabilityAI文本生成圖像,代碼與模型開源)2022年8月,StabilityAI發(fā)布了StableDiffusion,這是一種類似于DALL-E2與Imagen的開源Diffusion模型,代碼與模型權重均向公眾開放。(4)Transformer2017年由谷歌提出,采用注意力機制(attention)對輸入數(shù)據(jù)重要性的不同而分配不同權重,其并行化處理的優(yōu)勢能夠使其在更大的數(shù)據(jù)集訓練,加速了GPT等預訓練大模型的發(fā)展。 1957年一個新程序,"通用解題機"(GPS)的旗艦個版本進行了測試.這個程序是由制作"邏輯行家" 同一個組開發(fā)。泉州谷歌AIGC概念
其它AI領域也在80年代進入市場.其中一項就是機器視覺.泉州谷歌AIGC概念
20世紀70年代以來,人工智能被稱為世界三大技術之一(空間技術、能源技術、人工智能)。也被認為是21世紀三大技術(基因工程、納米科學、人工智能)之一。這是因為近三十年來它獲得了迅速的發(fā)展,在很多學科領域都獲得了廣泛應用,并取得了豐碩的成果,人工智能已逐步成為一個孑立的分支,無論在理論和實踐上都已自成一個系統(tǒng)。人工智能是研究使用計算機來模擬人的某些思維過程和智能行為(如學習、推理、思考、規(guī)劃等)的學科,主要包括計算機實現(xiàn)智能的原理、制造類似于人腦智能的計算機,使計算機能實現(xiàn)更高層次的應用。人工智能將涉及到計算機科學、心理學、哲學和語言學等學科??梢哉f幾乎是自然科學和社會科學的所有學科,其范圍已遠遠超出了計算機科學的范疇,人工智能與思維科學的關系是實踐和理論的關系,人工智能是處于思維科學的技術應用層次,是它的一個應用分支。從思維觀點看,人工智能不僅限于邏輯思維,要考慮形象思維、靈感思維才能促進人工智能的突破性的發(fā)展,數(shù)學常被認為是多種學科的基礎科學,數(shù)學也進入語言、思維領域,人工智能學科也必須借用數(shù)學工具,數(shù)學不僅在標準邏輯、模糊數(shù)學等范圍發(fā)揮作用,數(shù)學進入人工智能學科。 泉州谷歌AIGC概念