現(xiàn)代電子計算機的產(chǎn)生便是對人腦思維功能的模擬,是對人腦思維的信息過程的模擬。弱人工智能如今不斷地迅猛發(fā)展,尤其是2008年經(jīng)濟危機后,美日歐希望借機器人等實現(xiàn)再工業(yè)化,工業(yè)機器人以比以往任何時候更快的速度發(fā)展,更加帶動了弱人工智能和相關(guān)領(lǐng)域產(chǎn)業(yè)的不斷突破,很多必須用人來做的工作如今已經(jīng)能用機器人實現(xiàn)。而強人工智能則暫時處于瓶頸,還需要科學(xué)家們和人類的努力。用來研究人工智能的主要物質(zhì)基礎(chǔ)以及能夠?qū)崿F(xiàn)人工智能技術(shù)平臺的機器就是計算機,人工智能的發(fā)展歷史是和計算機科學(xué)技術(shù)的發(fā)展史聯(lián)系在一起的。除了計算機科學(xué)以外,人工智能還涉及信息論、控制論、自動化、仿生學(xué)、生物學(xué)、心理學(xué)、數(shù)理邏輯、語言學(xué)、醫(yī)學(xué)和哲學(xué)等多門學(xué)科。 但80年代對AI工業(yè)來說也不全是好年景.86-87年對AI系統(tǒng)的需求下降,業(yè)界損失了近5億美元.福州大廠AIGC用處
AIGC的中心技術(shù)有哪些?(1)變分自編碼(VariationalAutoencoder,VAE)變分自編碼器是深度生成模型中的一種,由Kingma等人在2014年提出,與傳統(tǒng)的自編碼器通過數(shù)值方式描述潛空間不同,它以概率方式對潛在空間進行觀察,在數(shù)據(jù)生成方面應(yīng)用價值較高。VAE分為兩部分,編碼器與解碼器。編碼器將原始高維輸入數(shù)據(jù)轉(zhuǎn)換為潛在空間的概率分布描述;解碼器從采樣的數(shù)據(jù)進行重建生成新數(shù)據(jù)。VAE模型(2)生成對抗網(wǎng)絡(luò)(GenerativeAdversarialNetworks,GAN)2014年IanGoodFellow提出了生成對抗網(wǎng)絡(luò),成為早期出名的生成模型。GAN使用零和博弈策略學(xué)習(xí),在圖像生成中應(yīng)用普遍。以GAN為基礎(chǔ)產(chǎn)生了多種變體,如DCGAN,StytleGAN,CycleGAN等。GAN模型GAN包含兩個部分:生成器:學(xué)習(xí)生成合理的數(shù)據(jù)。對于圖像生成來說是給定一個向量,生成一張圖片。其生成的數(shù)據(jù)作為判別器的負(fù)樣本。判別器:判別輸入是生成數(shù)據(jù)還是真實數(shù)據(jù)。網(wǎng)絡(luò)輸出越接近于0,生成數(shù)據(jù)可能性越大;反之,真實數(shù)據(jù)可能性越大。 福州企業(yè)AIGC費用1963年MIT從美國得到一筆220萬美元的資助,用于研究機器輔助識別.這筆資助來自,高級研究計劃署。。
AIGC的產(chǎn)品形態(tài)有哪些?1、基礎(chǔ)層(模型服務(wù))基礎(chǔ)層為采用預(yù)訓(xùn)練大模型搭建的基礎(chǔ)設(shè)施。由于開發(fā)預(yù)訓(xùn)練大模型技術(shù)門檻高、投入成本高,因此,該層主要由少數(shù)頭部企業(yè)或研發(fā)機構(gòu)主導(dǎo)。如谷歌、微軟、Meta、OpenAI、DeepMind、?;A(chǔ)層的產(chǎn)品形態(tài)主要包括兩種:一種為通過受控的api接口收取調(diào)用費;另一種為基于基礎(chǔ)設(shè)施開發(fā)專業(yè)的軟件平臺收取費用。2、中間層(2B)該層與基礎(chǔ)層的特別主要區(qū)別在于,中間層不具備開發(fā)大模型的能力,但是可基于開源大模型等開源技術(shù)進行改進、抽取或模型二次開發(fā)。該層為在大模型的基礎(chǔ)上開發(fā)的場景化、垂直化、定制化的應(yīng)用模型或工具。在AIGC的應(yīng)用場景中基于大模型抽取出個性化、定制化的應(yīng)用模型或工具滿足行業(yè)需求。如基于開源的StableDiffusion大模型所開發(fā)的二次元風(fēng)格圖像生成器,滿足特定行業(yè)場景需求。中間層的產(chǎn)品形態(tài)、商業(yè)模式與基礎(chǔ)層保持一致,分別為接口調(diào)用費與平臺軟件費。3、應(yīng)用層(2C)應(yīng)用層主要基于基礎(chǔ)層與中間層開發(fā),面向C端的場景化工具或軟件產(chǎn)品。應(yīng)用層更加關(guān)注用戶的需求,將AIGC技術(shù)切實融入用戶需求,實現(xiàn)不同形態(tài)、不同功能的產(chǎn)品落地??梢酝ㄟ^網(wǎng)頁、小程序、群聊、app等不同的載體呈現(xiàn)。
AIGC可以實現(xiàn)的功能:1.在藝術(shù)領(lǐng)域,參與內(nèi)容共創(chuàng);2.在傳媒領(lǐng)域,推動媒體融合轉(zhuǎn)型;3.在影視領(lǐng)域,參與制作全流程;4.在電商領(lǐng)域,推進虛實交融;5.在娛樂領(lǐng)域,提供發(fā)展動能;6.在博客領(lǐng)域,助力產(chǎn)業(yè)加快升級。AIGC可以實現(xiàn)什么功能1.在藝術(shù)領(lǐng)域AIGC可以參與美術(shù)、音樂、視頻、游戲等多領(lǐng)域的內(nèi)容共創(chuàng),拓展創(chuàng)作空間,不斷提升作品質(zhì)量。2.在傳媒領(lǐng)域AIGC可以采集信息、編輯文字、智能播報,實現(xiàn)人機協(xié)同生產(chǎn),推動媒體融合轉(zhuǎn)型。3.在影視領(lǐng)域AIGC能參與前期創(chuàng)作、中期拍攝、后期制作的全流程,整個過程中,AIGC可以創(chuàng)作劇本、合成虛擬背景、實現(xiàn)影視內(nèi)容2D轉(zhuǎn)3D等,極大程度地降低了制作成本。4.在電商領(lǐng)域AIGC可以打造品牌電商主播,呈現(xiàn)商品的3D模型,構(gòu)建虛擬商城等,逐步推進虛實交融,給消費者營造沉浸式體驗感。5.在娛樂領(lǐng)域AIGC可以推出虛擬偶像、虛擬網(wǎng)紅,降低翻車風(fēng)險,擴展輻射邊界,提供發(fā)展動能。6.在播客領(lǐng)域AIGC正在不斷延伸內(nèi)容創(chuàng)作的邊界,打破創(chuàng)作壁壘,助力產(chǎn)業(yè)加快升級。到1985年美國有一百多個公司生產(chǎn)機器視覺系統(tǒng),銷售額共達(dá)8千萬美元.
一.AIGC是什么?AIGC(即ArtificialIntelligenceGeneratedContent),中文譯為人工智能生成內(nèi)容。簡單來說,就是以前本來需要人類用思考和創(chuàng)造力才能完成的工作,現(xiàn)在可以利用人工智能技術(shù)來替代我們完成。在狹義上,AIGC是指利用AI自動生成內(nèi)容的生產(chǎn)方式,比如自動寫作、自動設(shè)計等。在廣義上,AIGC是指像人類一樣具備生成創(chuàng)造能力的AI技術(shù),它可以基于訓(xùn)練數(shù)據(jù)和生成算法模型,自主生成創(chuàng)造新的文本、圖像、音樂、視頻、3D交互內(nèi)容等各種形式的內(nèi)容和數(shù)據(jù)。二.AIGC發(fā)展歷史AIGC的發(fā)展歷程可以分成三個階段:早期萌芽階段(上世紀(jì)50年代至90年代中期),沉淀累積階段(上世紀(jì)90年代至本世紀(jì)10年代中期),快速發(fā)展階段(本世紀(jì)10年代中期至今)。在早期萌芽階段(1950s~1990s)由于技術(shù)限制,AIGC有限于小范圍實驗和應(yīng)用,例如1957年出現(xiàn)了首支電腦創(chuàng)作的音樂作品《依利亞克組曲(IlliacSuite)》。然而在80年代末至90年代中期,由于高成本和難以商業(yè)化,AIGC的資本投入有限,因此未能取得許多斐然進展。作者:HOTAIGC鏈接:源:簡書著作權(quán)歸作者所有。商業(yè)轉(zhuǎn)載請聯(lián)系作者獲得授權(quán),非商業(yè)轉(zhuǎn)載請注明出處。 1956年,被認(rèn)為是 人工智能之父的JOHN MCCARTHY組織了一次學(xué)會將許多對機器智能感興趣的行家學(xué)者聚集在一起。福建人工智能 AIGC好處
形成智能、感覺、創(chuàng)造力以及知覺等基礎(chǔ)的,就是大腦的記憶-預(yù)測系統(tǒng)。福州大廠AIGC用處
英文全稱是”AI Generated Content’',指的是利用人工智能來生產(chǎn)內(nèi)容,其中AI是人工智能的簡稱,GC則是創(chuàng)作內(nèi)容。AIGC可以包括各種形式的內(nèi)容,如文章,新聞,音樂,繪畫視頻等。它的應(yīng)用范圍非常普遍,目前AIGC主要運用在文字,圖像,視頻,音頻,游戲以及虛擬人等方面。
內(nèi)容創(chuàng)作(GC)的生態(tài)產(chǎn)業(yè)有四個發(fā)展階段:
行家生成內(nèi)容(Professionally-Generated Content。PGC)
用戶生成內(nèi)容(User-Generated Generated Content)
AI輔助生產(chǎn)內(nèi)容(AI-Generated Content,AIGC)
2022年被稱為 AIGC元年。2021年之前,AIGC生成主要還是文字,而新一代的模型可以處理的模態(tài)大為豐富且支持跨模態(tài)產(chǎn),可以支持AI插畫,文字生成配套視頻等常見應(yīng)用場景。 福州大廠AIGC用處