三明什么是AIGC

來源: 發(fā)布時間:2024-04-13

    視頻生成視頻生成與圖像生成在原理上相似,主要分為視頻編輯與視頻自主生成。視頻編輯可應用于視頻超分(視頻畫質(zhì)增強)、視頻修復(老電影上色、畫質(zhì)修復)、視頻畫面剪輯(識別畫面內(nèi)容,自動場景剪輯)。視頻自主生成可應用于圖像生成視頻(給定參照圖像,生成一段運動視頻)、文本生成視頻(給定一段描述性文字,生成內(nèi)容相符視頻)?!敬硇援a(chǎn)品或模型】:Deepfake,videoGPT,Gliacloud、Make-A-Video、Imagenvideo等。5、多模態(tài)生成以上四種模態(tài)可以進行組合搭配,進行模態(tài)間轉換生成。如文本生成圖像(AI繪畫、根據(jù)prompt提示語生成特定風格圖像)、文本生成音頻(AI作曲、根據(jù)prompt提示語生成特定場景音頻)、文本生成視頻(AI視頻制作、根據(jù)一段描述性文本生成語義內(nèi)容相符視頻片段)、圖像生成文本(根據(jù)圖像生成標題、根據(jù)圖像生成故事)、圖像生成視頻?!敬硇援a(chǎn)品或模型】:DALL-E、MidJourney、StableDiffusion等。 保證美國在技術進步上帶領于蘇聯(lián).這個計劃吸引了來自全世界的計算機科學家,加快了AI研究的發(fā)展步伐.三明什么是AIGC

三明什么是AIGC,AIGC

    在自然語言處理技術發(fā)展之前,人類只能通過一些固定模式的指令來與計算機進行溝通,這對于人工智能的發(fā)展是一個重大的突破。自然語言處理技術可以追溯到1950年,當時圖靈發(fā)表了一篇論文,提出了「圖靈測試」的概念作為判斷智能的條件。這一測試包含了自動語意翻譯和自然語言生成。自然語言處理技術可以分為兩個中心任務:自動語音識別和自然語言生成。自動語音識別是將語音信號轉換為文字,而自然語言生成則是將結構化數(shù)據(jù)轉換為自然語言文本。隨著AI技術的不斷發(fā)展,人工智能已經(jīng)可以通過自然語言處理技術和擴散模型(DiffusionModel)來生成自然語言文本,這使得人工智能不再作為內(nèi)容創(chuàng)造的輔助工具,而是可以創(chuàng)造生成內(nèi)容。這種生成式人工智能可以用于自然語言對答、機器翻譯、自然語言摘要、聊天機器人等多個領域,為人們提供更加智能化的服務和體驗??傊?,隨著自然語言處理技術和擴散模型的發(fā)展,人工智能已經(jīng)可以創(chuàng)造生成自然語言文本,這將會給我們的生活和工作帶來巨大的變革。 福建AIGC弊端盡管經(jīng)歷了這些受挫的事件,AI仍在慢慢恢復發(fā)展.新的技術在日本被開發(fā)出來,如在美國原創(chuàng)的模糊邏輯。

三明什么是AIGC,AIGC

    諸如我們熟知的聊天對話模型ChatGPT,基于。計算機視覺(CV)預訓練大模型自然語言處理(NLP)預訓練大模型多模態(tài)預訓練大模型微軟Florence(SwinTransformer)谷歌Bert/LaMDA/PaLMOpenAI的CLIP/DALL-EOpenAI的GPT-3/ChatGPT微軟的GLIPStabilityAI的StableDiffusion(1)計算機視覺(CV)預訓練大模型FlorenceFlorence是微軟在2021年11月提出的視覺基礎模型。Florence采用雙塔Transformer結構。文本采用12層Transformer,視覺采用SwinTransformer。通過來自互聯(lián)網(wǎng)的9億圖文對,采用UnifiedContrasiveLearning機制將圖文映射到相同空間中。其可處理的下游任務包括:圖文檢索、圖像分類、目標檢測、視覺對答以及動作識別。(2)自然語言處理(NLP)預訓練大模型LaMDALaMDA是谷歌在2021年發(fā)布的大規(guī)模自然語言對話模型。LaMDA的訓練過程分為預訓練與微調(diào)兩步。在預訓練階段,谷歌從公共數(shù)據(jù)數(shù)據(jù)中收集了,feed給LaMDA,讓其對自然語言有初步認識。到這一步通過輸入prompt能夠預測上下文,但是這種回答往往不夠準確,需要二次調(diào)優(yōu)。谷歌的做法是讓模型根據(jù)提問輸出多個回答,將這些回答輸入到分類器中,輸出回答結果的安全性Safety,敏感性Sensible。

    采用后一種方法時,編程者要為每一角色設計一個智能系統(tǒng)(一個模塊)來進行控制,這個智能系統(tǒng)(模塊)開始什么也不懂,就像初生嬰兒那樣,但它能夠?qū)W習,能漸漸地適應環(huán)境,應付各種復雜情況。這種系統(tǒng)開始也常犯錯誤,但它能吸取教訓,下一次運行時就可能改正,至少不會永遠錯下去,用不到發(fā)布新版本或打補丁。利用這種方法來實現(xiàn)人工智能,要求編程者具有生物學的思考方法,入門難度大一點。但一旦入了門,就可得到廣泛應用。由于這種方法編程時無須對角色的活動規(guī)律做詳細規(guī)定,應用于復雜問題,通常會比前一種方法更省力。與人類差距2023年,中國科學院自動化研究所(中科院自動化所)團隊嶄新完成的一項研究發(fā)現(xiàn),基于人工智能的神經(jīng)網(wǎng)絡和深度學習模型對幻覺輪廓“視而不見”,人類與人工智能的“角逐”在幻覺認知上“扳回一局”。 人類的語言,人類的智能是如此的復雜,以至于我們的研究還并未觸及其導向本質(zhì)的外延部分的邊沿。

三明什么是AIGC,AIGC

    簡單的智能AGENT是那些可以解決特定問題的程序。更復雜的AGENT包括人類和人類組織(如公司)。這些范式可以讓研究者研究單獨的問題和找出有用且可驗證的方案,而不需考慮單一的方法。一個解決特定問題的AGENT可以使用任何可行的方法-一些AGENT用符號方法和邏輯方法,一些則是子符號神經(jīng)網(wǎng)絡或其他新的方法。范式同時也給研究者提供一個與其他領域溝通的共同語言--如決策論和經(jīng)濟學(也使用ABSTRACTAGENTS的概念)。90年代智能AGENT范式被普遍接受。AGENT體系結構和認知體系結構研究者設計出一些系統(tǒng)來處理多ANGENT系統(tǒng)中智能AGENT之間的相互作用。一個系統(tǒng)中包含符號和子符號部分的系統(tǒng)稱為混合智能系統(tǒng),而對這種系統(tǒng)的研究則是人工智能系統(tǒng)集成。分級控制系統(tǒng)則給反應級別的子符號AI的傳統(tǒng)符號AI提供橋梁,同時放寬了規(guī)劃和世界建模的時間。RODNEYBROOKS的SUBSUMPTIONARCHITECTURE就是一個早期的分級系統(tǒng)計劃。 它應該像大腦一樣運轉?它是否需要軀體?廈門大廠AIGC案例

1957年一個新程序,"通用解題機"(GPS)的旗艦個版本進行了測試.這個程序是由制作"邏輯行家" 同一個組開發(fā)。三明什么是AIGC

    隨著人工智能技術的不斷發(fā)展,AIGC(ArtificialIntelligenceGeneratedContent)已經(jīng)成為了我們生活中不可或缺的一部分。無論是在電商、辦公還是其他行業(yè)中,AIGC都可以幫助人們更高效地完成任務,提高工作效率。在電商領域,AIGC可以生成商品標題、描述、廣告文案和廣告圖等內(nèi)容,幫助企業(yè)更好地推廣產(chǎn)品。通過AIGC技術,企業(yè)可以快速生成大量的精良內(nèi)容,提高商品的曝光率和銷售量。同時,AIGC還可以幫助企業(yè)更好地了解消費者的需求和喜好,從而更好地制定營銷策略。在辦公領域,AIGC可以幫助人們更輕松地完成各種任務,如寫周報日報、寫方案、寫運營活動、制作PPT等。通過AIGC技術,人們可以快速生成高質(zhì)量的文字內(nèi)容,減少繁瑣的重復性工作,提高工作效率。此外,AIGC還可以幫助人們更好地表達自己的想法和觀點,提高溝通效果??傊?,AIGC技術的應用范圍非常普遍,可以幫助人們更高效地完成任務,提高工作效率。未來隨著技術的不斷發(fā)展和完善,相信AIGC會在更多領域發(fā)揮更大的作用。 三明什么是AIGC