視頻目標(biāo)跟蹤廠家電話

來源: 發(fā)布時(shí)間:2024-10-30

之所以能產(chǎn)生這種可見運(yùn)動或表觀運(yùn)動,是因?yàn)槲矬w以不同的速度在不同的方向上移動,或者是因?yàn)橄鄼C(jī)在移動(或者兩者都有)在很多應(yīng)用程序中,跟蹤表觀運(yùn)動都是極其重要的。它可用來追蹤運(yùn)動中的物體,以測定它們的速度、判斷它們的目的地。對于手持?jǐn)z像機(jī)拍攝的視頻,可以用這種方法消除抖動或減小抖動幅度,使視頻更加平穩(wěn)。運(yùn)動估值還可用于視頻編碼,用以壓縮視頻,便于傳輸和存儲。被跟蹤的運(yùn)動可以是稀疏的(圖像的少數(shù)位置上有運(yùn)動,稱為稀疏運(yùn)動),也可以是稠密的(圖像的每個(gè)像素都有運(yùn)動,稱為稠密運(yùn)動)跟蹤視頻中的特征點(diǎn)從前面章節(jié)介紹的內(nèi)容可以看出,根據(jù)特殊的點(diǎn)分析圖像,可以使計(jì)算機(jī)視覺算法更加實(shí)高效。RK2588搭載AI智能算法,實(shí)現(xiàn)目標(biāo)識別與跟蹤。視頻目標(biāo)跟蹤廠家電話

目標(biāo)跟蹤

視頻自動跟蹤系統(tǒng),一般都是用在露天的、較大地域范圍的監(jiān)控系統(tǒng)中,且邊跟蹤邊錄像。在自動跟蹤系統(tǒng)的發(fā)展上,jun用上的視頻自動跟蹤、毫米波雷達(dá)跟蹤以及激光雷達(dá)跟蹤等是比較成熟的;非jun用領(lǐng)域,存在一些固定畫面、攝像機(jī)從不運(yùn)動的的目標(biāo)檢測與跟蹤系統(tǒng);基于帶紅外線的、常用在演播室或者會議室的、很近距離的跟蹤系統(tǒng),目前主要局限于簡單背景(如室內(nèi)環(huán)境下)、大目標(biāo)(即目標(biāo)在視頻圖像中占較大區(qū)域),而且一般無法實(shí)現(xiàn)控制攝像機(jī)轉(zhuǎn)動來對目標(biāo)進(jìn)行跟蹤。數(shù)據(jù)目標(biāo)跟蹤聯(lián)系方式全國產(chǎn)化智能處理板應(yīng)用廣闊。

視頻目標(biāo)跟蹤廠家電話,目標(biāo)跟蹤

目標(biāo)跟蹤是在首幀中給定待跟蹤目標(biāo)的情況下,對目標(biāo)進(jìn)行特征提取,對感興趣區(qū)域進(jìn)行分析;然后在后續(xù)圖像中找到相似的特征和感興趣區(qū)域,并對目標(biāo)在下一幀中的位置進(jìn)行預(yù)測。作為計(jì)算機(jī)視覺領(lǐng)域的一個(gè)熱點(diǎn)研究方向,目標(biāo)跟蹤一直都是一項(xiàng)具有挑戰(zhàn)性的工作。目標(biāo)跟蹤技術(shù)在導(dǎo)彈制導(dǎo)、智能監(jiān)控系統(tǒng)、視頻檢索、無人駕駛、人機(jī)交互和工業(yè)機(jī)器人等領(lǐng)域具有重要的作用。從上世紀(jì)50年代目標(biāo)跟蹤的起源到現(xiàn)今,盡管已有大量的研究成果,但是在復(fù)雜條件下實(shí)現(xiàn)實(shí)時(shí)準(zhǔn)確的跟蹤依舊難以實(shí)現(xiàn)。

現(xiàn)在城市里面植被豐富,天氣干燥時(shí)加上不少樹林落葉、枯枝和枯草,在室外燒紙、點(diǎn)火或亂扔煙頭,就會容易引起火災(zāi)。國家明令禁止在公共場所吸煙,因此除了法律的約束,更加便捷的手段應(yīng)該予以應(yīng)用來彌補(bǔ)人力監(jiān)管的不足。在火星識別領(lǐng)域,慧視光電開發(fā)的RV1126圖像處理板,憑借小巧精悍的性能,優(yōu)異的識別能力,具有重要作用。通過在傳統(tǒng)監(jiān)控、攝像頭等設(shè)備中內(nèi)置RV1126圖像處理板,板卡將自帶目標(biāo)識別算法,能夠?qū)ξ⑿』鹦瞧鸬骄_識別的功能,一旦目標(biāo)區(qū)域出現(xiàn)火星,就能立刻向監(jiān)管人員發(fā)出警報(bào)。反應(yīng)時(shí)間越快,就越能杜絕火災(zāi)的發(fā)生,而快速響應(yīng)的火星識別技術(shù)就是人力監(jiān)管的得力幫手。RK3588圖像處理板是我司自主研發(fā)的目標(biāo)跟蹤板,該板卡采用國產(chǎn)高性能CPU,搭載自研目標(biāo)跟蹤及跟蹤算法。

視頻目標(biāo)跟蹤廠家電話,目標(biāo)跟蹤

跟蹤任務(wù)與檢測任務(wù)有著密切的關(guān)系。從輸入輸出的形式上來看,這兩個(gè)任務(wù)是極為相似的。它們均以圖片(或者視頻幀)作為模型的輸入,經(jīng)過處理后,輸出一堆目標(biāo)物置的矩形框。它們之間比較大的區(qū)別體現(xiàn)在對“目標(biāo)物體”的定義上。對于檢測任務(wù)來說,目標(biāo)物體屬于預(yù)先定義好的某幾個(gè)類別,如圖1左圖所示;而對于跟蹤任務(wù)來說,目標(biāo)物體指的是在首幀中所指定的跟蹤個(gè)體,如圖1右圖所示。實(shí)際上,如果我們將每一個(gè)跟蹤的個(gè)體當(dāng)成是一個(gè)類別的話,跟蹤任務(wù)甚至能被當(dāng)成是一種特殊的檢測任務(wù),稱為個(gè)體檢測(Instance Detection)?;垡昍K3399圖像處理板能實(shí)現(xiàn)24小時(shí)、無間隙信息化監(jiān)控。海南無源目標(biāo)跟蹤

RV1126搭載AI智能算法,實(shí)現(xiàn)目標(biāo)識別與跟蹤。視頻目標(biāo)跟蹤廠家電話

由于侵入的目標(biāo)的形狀和顏色等特征是難以固定的,再加上監(jiān)控的場景,即背景往往比較復(fù)雜,只利用一個(gè)單幀圖像就找出移動的目標(biāo)是非常困難的。然而,目標(biāo)的運(yùn)動導(dǎo)致了其運(yùn)動時(shí)間內(nèi),監(jiān)控場景圖像的連續(xù)變化,所以,使用圖像序列分析往往是比較有效的,而且適合于低信噪比的情況。由于監(jiān)控系統(tǒng)通常監(jiān)控的視野比較大,系統(tǒng)設(shè)置的環(huán)境較為惡劣,圖像傳輸?shù)木嚯x較遠(yuǎn),從而導(dǎo)致圖像的信噪比不高,因此采用突出目標(biāo)的方法,需要在配準(zhǔn)的前提下進(jìn)行多幀能量積累和噪聲抑制。在該技術(shù)中,要研究的問題有,相鄰的兩幅或多幅圖像之間的關(guān)系是什么關(guān)系,是簡單的圖像差的值,還是多幅之間差的最大值,還是其他的與圖像減法之間的其他函數(shù)關(guān)系,是尤其需要研究的。在研究中,研究如何差,如何自動得到差圖像的分割門限,如何減小背景和突出目標(biāo)是研究的方向。視頻目標(biāo)跟蹤廠家電話