南通產(chǎn)品質(zhì)量監(jiān)測特點(diǎn)

來源: 發(fā)布時間:2023-09-13

隨著電力電子技術(shù)、自動化控制技術(shù)的不斷發(fā)展,電機(jī)在工業(yè)生產(chǎn)以及家用電器中得到了應(yīng)用,在市場競爭中正逐步顯示自己的優(yōu)勢。傳統(tǒng)的電機(jī)在線監(jiān)測裝置多采用電流表、電壓表、功率表等較為原始的儀表來進(jìn)行測量,采用人工讀數(shù)的方式進(jìn)行數(shù)據(jù)的測量、記錄和分析,這不僅硬件冗余,系統(tǒng)雜亂,而且操作極為不便,更有甚者,讀數(shù)誤差大,測試結(jié)果不準(zhǔn)確。有些場合需要進(jìn)行電機(jī)多種參數(shù)的監(jiān)測,這樣就勢必會加大各種測量儀器的使用以及人力資源的投入。傳統(tǒng)的監(jiān)測方法要求監(jiān)測人員具有較高的技能和水平,但是由于人為誤差的不可避免,這種監(jiān)測方法無法做定量分析,無法更加準(zhǔn)確、實(shí)時的掌握電機(jī)的運(yùn)行狀態(tài)和故障。技術(shù)實(shí)現(xiàn)要素:本發(fā)明提出了一種電機(jī)在線監(jiān)測裝置和方法,通過對扭矩、轉(zhuǎn)速、各相電流、電壓、溫度、輸入、輸出功率和效率進(jìn)行實(shí)時動態(tài)的監(jiān)測以及對過電壓、過電流、過熱進(jìn)行報警停機(jī),解決現(xiàn)有技術(shù)中監(jiān)測參數(shù)不能定量分析以及無法更加準(zhǔn)確、實(shí)時的掌握電機(jī)運(yùn)行狀態(tài)和故障的技術(shù)問題。電機(jī)狀態(tài)監(jiān)測技術(shù)可幫助運(yùn)行維護(hù)人員擺脫被動檢修和不太理想的定期檢修的困境,實(shí)現(xiàn)“預(yù)知”維修。南通產(chǎn)品質(zhì)量監(jiān)測特點(diǎn)

南通產(chǎn)品質(zhì)量監(jiān)測特點(diǎn),監(jiān)測

隨著電力電子技術(shù)、自動化控制技術(shù)的不斷發(fā)展,電機(jī)在工業(yè)生產(chǎn)以及家用電器中得到了的應(yīng)用,在市場競爭中正逐步顯示自己的優(yōu)勢。傳統(tǒng)的電機(jī)在線監(jiān)測裝置多采用電流表、電壓表、功率表等較為原始的儀表來進(jìn)行測量,采用人工讀數(shù)的方式進(jìn)行數(shù)據(jù)的測量、記錄和分析,這不僅硬件冗余,系統(tǒng)雜亂,而且操作極為不便,更有甚者,讀數(shù)誤差大,測試結(jié)果不準(zhǔn)確。有些場合需要進(jìn)行電機(jī)多種參數(shù)的監(jiān)測,這樣就勢必會加大各種測量儀器的使用以及人力資源的投入。傳統(tǒng)的監(jiān)測方法要求監(jiān)測人員具有較高的技能和水平,但是由于人為誤差的不可避免,這種監(jiān)測方法無法做定量分析,無法更加準(zhǔn)確、實(shí)時的掌握電機(jī)的運(yùn)行狀態(tài)和故障。技術(shù)實(shí)現(xiàn)要素:本發(fā)明提出了一種電機(jī)在線監(jiān)測裝置和方法,通過對扭矩、轉(zhuǎn)速、各相電流、電壓、溫度、輸入、輸出功率和效率進(jìn)行實(shí)時動態(tài)的監(jiān)測以及對過電壓、過電流、過熱進(jìn)行報警停機(jī),解決現(xiàn)有技術(shù)中監(jiān)測參數(shù)不能定量分析以及無法更加準(zhǔn)確、實(shí)時的掌握電機(jī)運(yùn)行狀態(tài)和故障的技術(shù)問題。南通汽車監(jiān)測應(yīng)用設(shè)備的故障監(jiān)測診斷技術(shù)是利用科學(xué)的檢測方法和現(xiàn)代化技術(shù)手段,對設(shè)備目前的運(yùn)行狀態(tài)進(jìn)行監(jiān)測和排查。

南通產(chǎn)品質(zhì)量監(jiān)測特點(diǎn),監(jiān)測

現(xiàn)代化生產(chǎn)企業(yè)為了極大限度地提高生產(chǎn)水平和經(jīng)濟(jì)效益,不斷地向規(guī)模化和高技術(shù)技術(shù)含量發(fā)展,因此生產(chǎn)裝置趨向大型化、高速高效化、自動化和連續(xù)化,人們對設(shè)備的要求不僅是性能好,效率高,還要求在運(yùn)行過程中少出故障,否則因故障停機(jī)帶來的損失是十分巨大的。國內(nèi)外化工、石化、電力、鋼鐵和航空等部門,從許多大型設(shè)備故障和事故中逐漸認(rèn)識到開展設(shè)備故障診斷的重要性。管理好用好這些大型設(shè)備,使其安全、可靠地運(yùn)行,成為設(shè)備管理中的突出任務(wù)。對于單機(jī)連續(xù)運(yùn)行的生產(chǎn)設(shè)備,停機(jī)損失巨大的大型機(jī)組和重大設(shè)備,不宜解體檢查的高精度設(shè)備以及發(fā)生故障后會引起公害的設(shè)備。傳統(tǒng)的事后和定期維修帶來的過剩維修或失修,使維修費(fèi)用在生產(chǎn)成本中所占比重很大。狀態(tài)監(jiān)測維修是在設(shè)備運(yùn)行時,對它的各個主要部位產(chǎn)生的物理、化學(xué)信號進(jìn)行狀態(tài)監(jiān)測,掌握設(shè)備的技術(shù)狀態(tài),對將要形成或已經(jīng)形成的故障進(jìn)行分析診斷,判定設(shè)備的劣化程度和部位,在故障產(chǎn)生前制訂預(yù)知性維修計劃,確定設(shè)備維修的內(nèi)容和時間。因此狀態(tài)監(jiān)測維修既能經(jīng)常保持設(shè)備的完好狀態(tài),又能充分利用零部位的使用壽命,從而延長大修間隔,縮短大修時間,減少故障停機(jī)損失。

傳統(tǒng)方法通常無法自適應(yīng)提取特征, 同時需要一定的離線數(shù)據(jù)訓(xùn)練得到檢測模型, 但目標(biāo)對象在線場景下采集到的數(shù)據(jù)有限, 且其數(shù)據(jù)分布與訓(xùn)練數(shù)據(jù)的分布可能因隨機(jī)噪聲、變工況等原因而存在差異, 導(dǎo)致離線訓(xùn)練的模型并不完全適合于在線數(shù)據(jù), 容易降低檢測結(jié)果的準(zhǔn)確性; 其次, 上述方法通常采用基于異常點(diǎn)的檢測算法, 未充分考慮樣本前后的時序關(guān)系, 容易因數(shù)據(jù)微小波動而產(chǎn)生誤報警, 降低檢測結(jié)果的魯棒性; 再次, 為降低誤報警, 這類方法需要反復(fù)調(diào)整報警閾值. 此外, 基于系統(tǒng)分析的故障診斷方法利用狀態(tài)空間描述建立機(jī)理模型, 可獲得理想的診斷和檢測結(jié)果, 但這類方法通常需要提前知道系統(tǒng)運(yùn)動方程等信息, 對于軸承運(yùn)行來說, 這類信息通常不易獲知. 近年來, 深度神經(jīng)網(wǎng)絡(luò)已被成功應(yīng)用于早期故障特征的自動提取和識別, 可自適應(yīng)地提取信息豐富和判別能力強(qiáng)的深度特征, 因此具有較好的普適性. 但是, 這類方法一方面需要大量的輔助數(shù)據(jù)進(jìn)行模型訓(xùn)練, 而歷史采集的輔助數(shù)據(jù)與目標(biāo)對象數(shù)據(jù)可能存在較大不同, 直接訓(xùn)練并不能有效提升在線檢測的特征表示效果; 另一方面, 在訓(xùn)練過程中未能針對早期故障引發(fā)的狀態(tài)變化而有目的地強(qiáng)化相應(yīng)特征表示. 因此, 深度學(xué)習(xí)方法在早期故障在線監(jiān)測中的應(yīng)用仍存在較大的提升空間.β-Star監(jiān)測系統(tǒng)是盈蓓德智能科技的產(chǎn)品,為大型電機(jī)提供數(shù)據(jù)監(jiān)測和故障預(yù)判服務(wù)。

南通產(chǎn)品質(zhì)量監(jiān)測特點(diǎn),監(jiān)測

設(shè)備狀態(tài)監(jiān)測和故障診斷技術(shù)是設(shè)備維護(hù)手段之一。設(shè)備的故障監(jiān)測診斷技術(shù),就是利用科學(xué)的檢測方法和現(xiàn)代化技術(shù)手段,對設(shè)備目前的運(yùn)行狀態(tài)進(jìn)行監(jiān)測和排查,從而判斷出設(shè)備運(yùn)行狀態(tài)的可靠性,確認(rèn)其局部或整機(jī)是否正常運(yùn)行。煤礦用機(jī)電設(shè)備溫度振動監(jiān)測系統(tǒng)用于煤礦主扇、壓風(fēng)機(jī)、鋼絲繩牽引帶式輸送機(jī)、滾筒帶式輸送機(jī)、排水泵和電動機(jī)、提升機(jī)等,有助于掌握設(shè)備運(yùn)行工況中的溫度振動數(shù)據(jù)。提升機(jī)、鋼絲繩牽引、滾筒帶式輸送機(jī)、皮帶機(jī)、空壓機(jī)、壓風(fēng)機(jī)、水泵等煤礦機(jī)電設(shè)備要求增加電動機(jī)及主要軸承溫度和振動監(jiān)測。裝置功能:1、提升機(jī)、水泵、皮帶機(jī)等設(shè)備電動機(jī)主軸承溫度振動在線監(jiān)測2、礦用高壓異步電動機(jī)軸承溫度振動檢測診斷3、提升機(jī)、水泵、皮帶機(jī)等設(shè)備滾筒主軸承溫度振動在線監(jiān)測4、井下大型機(jī)電設(shè)備電動機(jī)及主要軸承溫度振動在線監(jiān)測5、可以同時收集電機(jī)前后軸承溫度及電機(jī)振動量的數(shù)值,對收到的信息分析處理6、系統(tǒng)提供網(wǎng)絡(luò)接口,可直接與智能礦山網(wǎng)絡(luò)相連,也可與其它網(wǎng)絡(luò)內(nèi)的系統(tǒng)連接;7、在線系統(tǒng)軟件可實(shí)時監(jiān)測任意通道的頻譜,時域波形、趨勢、三維譜圖和坐標(biāo)圖,還可通過互聯(lián)網(wǎng)進(jìn)行遠(yuǎn)程監(jiān)測。大型電機(jī)監(jiān)測和故障預(yù)判系統(tǒng)助力實(shí)現(xiàn)工業(yè)設(shè)備智能化管理和預(yù)測性維護(hù)。南通產(chǎn)品質(zhì)量監(jiān)測特點(diǎn)

盈蓓德科技提供一種滿足大型電機(jī)設(shè)備監(jiān)測要求,實(shí)現(xiàn)振動數(shù)據(jù)采集及分析,造價較低的振動監(jiān)測系統(tǒng)。南通產(chǎn)品質(zhì)量監(jiān)測特點(diǎn)

低信噪比微弱信號特征早期故障的信號處理。早期故障信息具有明顯的低信噪比微弱信號的特征,為實(shí)現(xiàn)早期故障有效分析,涉及方法包括:多傳感系統(tǒng)檢測及信息融合,非平穩(wěn)及非線性信號處理,故障征兆量和損傷征兆量信號分析,噪聲規(guī)律與特點(diǎn)分析,以及相關(guān)數(shù)據(jù)挖掘、粗糙集等方法。故障預(yù)測模型構(gòu)建。構(gòu)建基于智能信息系統(tǒng)的設(shè)備早期故障預(yù)測模型,這類模型大致有兩個途徑,分別是物理信息預(yù)測模型以及數(shù)據(jù)信息預(yù)測模型,或構(gòu)建這兩類預(yù)測模型相融合的預(yù)測模型。運(yùn)行狀態(tài)劣化的相關(guān)評價參數(shù)、模式及準(zhǔn)則。如表征設(shè)備狀態(tài)發(fā)展的參數(shù)及特征模式,狀態(tài)發(fā)展評價準(zhǔn)則及條件,面向安全保障的決策理論方法,穩(wěn)定性、可靠性及維修性評估依據(jù)及判據(jù)等。物聯(lián)網(wǎng)聲學(xué)監(jiān)控系統(tǒng)以音頻數(shù)據(jù),輔以其他設(shè)備參數(shù),通過物聯(lián)網(wǎng)技術(shù)實(shí)現(xiàn)設(shè)備狀態(tài)的遠(yuǎn)程感知,基于AI神經(jīng)網(wǎng)絡(luò)技術(shù),計算并提取設(shè)備音頻特征,從而實(shí)現(xiàn)設(shè)備運(yùn)行狀態(tài)的實(shí)時評估與故障的早期識別。幫助企業(yè)用戶提升生產(chǎn)效率,保證生產(chǎn)安全,優(yōu)化生產(chǎn)決策。南通產(chǎn)品質(zhì)量監(jiān)測特點(diǎn)