無錫芯軟智控科技有限公司榮獲無錫市專精特新中小企業(yè)榮譽(yù)
又一家上市公司“精工科技”選擇芯軟云“
智能排產(chǎn)功能在MES管理系統(tǒng)中有哪些應(yīng)用
心芯相連·共京能年|2024年芯軟智控企業(yè)年會網(wǎng)滿舉行
無錫芯軟智控科技有限公司榮獲無錫市專精特新中小企業(yè)榮譽(yù)
又一家上市公司“精工科技“選擇芯軟云!
新誠物業(yè)&芯軟智控:一封表揚(yáng)信,一面錦旗,是對芯軟智控的滿分
心芯相連·共京能年|2024年芯軟智控企業(yè)年會網(wǎng)滿舉行
無錫芯軟智控科技有限公司榮獲無錫市專精特新中小企業(yè)榮譽(yù)
了解MES生產(chǎn)管理系統(tǒng)的作用及優(yōu)勢?
在工業(yè)現(xiàn)場的預(yù)防性維護(hù)應(yīng)用中,振動是大型旋轉(zhuǎn)等設(shè)備即將發(fā)生故障的重要指標(biāo),一是在大型旋轉(zhuǎn)機(jī)械設(shè)備的所有故障中,振動問題出現(xiàn)的概率比較高;另一方面,振動信號包含了豐富的機(jī)械及運(yùn)行的狀態(tài)信息;第三,振動信號易于拾取,便于在不影響機(jī)械運(yùn)行的情況下實(shí)行在線監(jiān)測和診斷。旋轉(zhuǎn)類設(shè)備的預(yù)防性維護(hù)需要重點(diǎn)監(jiān)控振動量的變化。其預(yù)測性診斷技術(shù)對于制造業(yè)、風(fēng)電等的行業(yè)的運(yùn)維具有非常重大的意義。通過設(shè)備振動等狀態(tài)的預(yù)測性維護(hù),可以及時發(fā)現(xiàn)并解決系統(tǒng)及零部件存在問題。但是對于一些不是因?yàn)樵O(shè)備問題而存在的固有振動,振動強(qiáng)度的不必要增加會對部件產(chǎn)生有害的力,危及設(shè)備的使用壽命和質(zhì)量。在這種情況下,則需要采用振動隔離技術(shù)來解決和干預(yù),有效抑制振動和噪聲的危害,避免設(shè)備故障和流程關(guān)閉。工業(yè)監(jiān)測系統(tǒng)可以預(yù)測設(shè)備的故障并提前進(jìn)行維修。杭州NVH監(jiān)測數(shù)據(jù)
故障預(yù)測與健康管理是以工業(yè)監(jiān)測數(shù)據(jù)為基礎(chǔ),通過高等數(shù)學(xué)、數(shù)學(xué)優(yōu)化、統(tǒng)計概率、信號處理、機(jī)器學(xué)習(xí)和統(tǒng)計學(xué)習(xí)等技術(shù)搭建模型算法,實(shí)現(xiàn)產(chǎn)品和裝備的狀態(tài)監(jiān)測、故障診斷及壽命預(yù)測,為產(chǎn)品和裝備的正常運(yùn)行保駕護(hù)航,從而提高其安全性、可靠性。故障預(yù)測與健康管理是以工業(yè)監(jiān)測數(shù)據(jù)為基礎(chǔ),通過高等數(shù)學(xué)、數(shù)學(xué)優(yōu)化、統(tǒng)計概率、信號處理、機(jī)器學(xué)習(xí)和統(tǒng)計學(xué)習(xí)等技術(shù)搭建模型算法,實(shí)現(xiàn)產(chǎn)品和裝備的狀態(tài)監(jiān)測、故障診斷及壽命預(yù)測,為產(chǎn)品和裝備的正常運(yùn)行保駕護(hù)航,從而提高其安全性和可靠性。近年來我們提出的標(biāo)準(zhǔn)化平方包絡(luò)和數(shù)學(xué)框架以及準(zhǔn)算數(shù)均值比數(shù)學(xué)框架指引了稀疏測度構(gòu)造的新方向,同時發(fā)現(xiàn)了大量與基尼指數(shù)、峭度、香農(nóng)熵等具有等價性能的稀疏測度?;跇?biāo)準(zhǔn)化平方包絡(luò)和數(shù)學(xué)框架以及凸優(yōu)化技術(shù),提出了在線更新模型權(quán)重可解釋的機(jī)器學(xué)習(xí)算法,可以利用模型權(quán)重來實(shí)時確認(rèn)故障特征頻率,解決了狀態(tài)監(jiān)測與故障診斷領(lǐng)域傳統(tǒng)機(jī)器學(xué)習(xí)只能輸出狀態(tài),而無法提供故障特征來確認(rèn)輸出狀態(tài)的難題。杭州電力監(jiān)測公司監(jiān)測結(jié)果的比較可以幫助我們評估不同營銷活動的效果和效益。
電機(jī)狀態(tài)監(jiān)測故障診斷技術(shù)是一種了解和掌握電機(jī)在使用過程中的狀態(tài),確定其整體或局部正?;虍惓?,早期發(fā)現(xiàn)故障及其原因,并能預(yù)報故障發(fā)展趨勢的技術(shù),電機(jī)狀態(tài)監(jiān)測與故障診斷技術(shù)包括識別電機(jī)狀態(tài)監(jiān)測和預(yù)測發(fā)展趨勢兩方面。設(shè)備狀態(tài)是指設(shè)備運(yùn)行的工況,由設(shè)備運(yùn)行過程中的各種性能參數(shù)以及設(shè)備運(yùn)行過程中產(chǎn)生的二次效應(yīng)參數(shù)和產(chǎn)品質(zhì)量指標(biāo)參數(shù)來描述。設(shè)備狀態(tài)的類型包括:正常、異常和故障三種。設(shè)備狀態(tài)監(jiān)測是通過測定以上參數(shù),并進(jìn)行分析處理,根據(jù)分析處理結(jié)果判定設(shè)備狀態(tài)。對設(shè)備進(jìn)行定期或連續(xù)監(jiān)測,包括采用各種測試、分析判別方法,結(jié)合設(shè)備的歷史狀況和運(yùn)行條件,弄清設(shè)備的客觀狀態(tài),獲取設(shè)備性能發(fā)展的趨勢規(guī)律,為設(shè)備的性能評價、合理使用、安全運(yùn)行、故障診斷及設(shè)備自動控制打下基礎(chǔ)。
隨著電力電子技術(shù)、自動化控制技術(shù)的不斷發(fā)展,電機(jī)在工業(yè)生產(chǎn)以及家用電器中得到了的應(yīng)用,在市場競爭中正逐步顯示自己的優(yōu)勢。傳統(tǒng)的電機(jī)在線監(jiān)測裝置多采用電流表、電壓表、功率表等較為原始的儀表來進(jìn)行測量,采用人工讀數(shù)的方式進(jìn)行數(shù)據(jù)的測量、記錄和分析,這不僅硬件冗余,系統(tǒng)雜亂,而且操作極為不便,更有甚者,讀數(shù)誤差大,測試結(jié)果不準(zhǔn)確。有些場合需要進(jìn)行電機(jī)多種參數(shù)的監(jiān)測,這樣就勢必會加大各種測量儀器的使用以及人力資源的投入。傳統(tǒng)的監(jiān)測方法要求監(jiān)測人員具有較高的技能和水平,但是由于人為誤差的不可避免,這種監(jiān)測方法無法做定量分析,無法更加準(zhǔn)確、實(shí)時的掌握電機(jī)的運(yùn)行狀態(tài)和故障。技術(shù)實(shí)現(xiàn)要素:本發(fā)明提出了一種電機(jī)在線監(jiān)測裝置和方法,通過對扭矩、轉(zhuǎn)速、各相電流、溫度、輸入、輸出功率和效率進(jìn)行實(shí)時動態(tài)的監(jiān)測以及對過電壓、過電流、過熱進(jìn)行報警停機(jī),解決現(xiàn)有技術(shù)中監(jiān)測參數(shù)不能定量分析以及無法更加準(zhǔn)確、實(shí)時的掌握電機(jī)運(yùn)行狀態(tài)和故障的技術(shù)問題。監(jiān)測工作需要及時更新數(shù)據(jù),以保持對市場的了解。
基于交流電機(jī)的特征量:通過故障機(jī)理分析可知,交流電機(jī)運(yùn)行過程中,其故障與否必然表現(xiàn)為一些特征參量的變化,根據(jù)診斷需要,選擇有代表性的特征參量為該設(shè)備在線監(jiān)測的被測信號,準(zhǔn)確地提取這些故障特征量,這是故障診斷的關(guān)鍵。故障特征量,特別是反映早期故障征兆的信號往往比較弱,而相應(yīng)的背景噪聲比較弱,常規(guī)的監(jiān)測方法,因受傳感器的準(zhǔn)確性、微處理器的速度、A/D轉(zhuǎn)換的分辨率與轉(zhuǎn)換速度等硬件條件限制,以及一般的數(shù)據(jù)處理方式的不足,很難滿足提取這些特征量的要求,需要采用一些特殊的電工測量手段與信號處理方法。例如小波變換原理的應(yīng)用。電機(jī)故障的現(xiàn)代分析方法:基于信號變換的診斷方法電機(jī)設(shè)備的許多故障信息是以調(diào)制的形式存在于所監(jiān)測的電氣信號及振動信號之中,如果借助于某種變換對這些信號進(jìn)行解調(diào)處理,就能方便地獲得故障特征信息,以確定電機(jī)設(shè)備所發(fā)生的故障類型。工業(yè)監(jiān)測設(shè)備可以幫助企業(yè)實(shí)現(xiàn)智能化管理。常州NVH監(jiān)測數(shù)據(jù)
監(jiān)測工作需要專業(yè)的人員進(jìn)行,以確保數(shù)據(jù)的準(zhǔn)確性和可靠性。杭州NVH監(jiān)測數(shù)據(jù)
傳統(tǒng)維護(hù)模式中的故障后維護(hù)與定期維護(hù)將影響生產(chǎn)效率與產(chǎn)品質(zhì)量,并大幅提高制造商的成本。隨著物聯(lián)網(wǎng)、大數(shù)據(jù)、云計算、機(jī)器學(xué)習(xí)與傳感器等技術(shù)的成熟,預(yù)測性維護(hù)技術(shù)應(yīng)運(yùn)而生。以各類如電機(jī)、軸承等設(shè)備為例,目前已發(fā)展到較為成熟的在線持續(xù)監(jiān)測階段,來實(shí)現(xiàn)查看設(shè)備是否需要維護(hù)、怎么安排維護(hù)時間來減少計劃性停產(chǎn)等,并能夠快速、有效的通過物聯(lián)網(wǎng)接入到整個網(wǎng)絡(luò),將數(shù)據(jù)回傳至管理中心,來實(shí)現(xiàn)電機(jī)設(shè)備的預(yù)測性維護(hù)。電動機(jī)是機(jī)械加工中不可或缺的必備工具,電動機(jī)在運(yùn)轉(zhuǎn)中常產(chǎn)生各種故障,為保證電動機(jī)運(yùn)行安全,對電動機(jī)運(yùn)行狀態(tài)進(jìn)行在線監(jiān)測尤為重要。
以三相異步電動機(jī)為研究對象,采用傳感器獲取電動機(jī)運(yùn)行中的重要參數(shù)(振動、噪聲、轉(zhuǎn)速及溫度等),由時/頻域分析及能量分析等方法提取電動機(jī)運(yùn)行特征量,構(gòu)成特征向量,采用BP神經(jīng)網(wǎng)絡(luò)訓(xùn)練的方法建立狀態(tài)識別模型,通過BP神經(jīng)網(wǎng)絡(luò)模式識別方法,判斷電動機(jī)運(yùn)行的狀態(tài),在此基礎(chǔ)上,利用LabVIEW軟件構(gòu)建可視化監(jiān)測系統(tǒng),將電動機(jī)運(yùn)行參數(shù)及狀態(tài)實(shí)時顯示在可視化界面中,完成在線智能監(jiān)測。 杭州NVH監(jiān)測數(shù)據(jù)