超聲微泡的大小差異影響超聲微泡的藥代動(dòng)力學(xué)、病變部位靶向、內(nèi)吞過(guò)程和細(xì)胞攝取。人體生物系統(tǒng)對(duì)不同顆粒的反應(yīng)不同,小于8μm的氣泡具有模擬紅細(xì)胞循環(huán)的優(yōu)點(diǎn),從而促進(jìn)其擴(kuò)散到血管和***間的循環(huán)中。除此之外,氣泡的大小不應(yīng)超過(guò)8μm,因?yàn)樗赡軐?dǎo)致并發(fā)癥,如血流中的動(dòng)脈栓塞。因此,超聲微泡在早期開(kāi)發(fā)時(shí)就被用作理想的造影劑,并被應(yīng)用于超聲分子成像、磁共振成像(MRI)、近紅外成像(NIRF)、磁共振成像(MRI)、正電子發(fā)射斷層掃描(PET)、單光子發(fā)射計(jì)算機(jī)斷層掃描(SPECT)、光學(xué)成像和對(duì)比增強(qiáng)超聲(CEUS)成像的診斷。目前,超聲微泡被用作***和***藥物、抗體、基因和miRNA的遞送劑,它們可以與光敏劑結(jié)合以輔助成像。超聲微泡還可以通過(guò)MRI/NIR/ US等三模成像方法提高***效率,從而減少重復(fù),對(duì)靶***/組織的危害相對(duì)較小。基于EPR的納米顆粒靶向策略主要致力于調(diào)整藥物或載體的大小和/或利用配體連接涉及EPR效應(yīng)的分子。四川紅色熒光超聲微泡
***個(gè)靶向微泡心臟成像研究是在急性缺血再灌注損傷模型中進(jìn)行的,該模型在狗身上注射了涂有磷脂酰絲氨酸的白細(xì)胞靶向微泡,磷脂酰絲氨酸是顆粒吞噬攝取的標(biāo)記物。這些微泡針對(duì)的是在血管中積累且尚未外滲的白細(xì)胞:在再灌注后1小時(shí)觀察到**靶向的造影劑在梗死區(qū)積累。在心肌中觀察到超聲造影劑信號(hào)、中性粒細(xì)胞靶向放射性示蹤劑的積累與髓過(guò)氧化物酶(炎癥的酶標(biāo)記物)之間的相關(guān)性。上述方法的對(duì)比機(jī)制是基于白細(xì)胞在缺血-再灌注損傷區(qū)與上調(diào)的細(xì)胞粘附分子(p-選擇素、e-選擇素、ICAM-1和VCAM-1)在血管內(nèi)膜上的強(qiáng)烈結(jié)合現(xiàn)象。因此,不依賴(lài)白細(xì)胞作為微泡的二級(jí)捕獲目標(biāo)可能是更好的策略,而是設(shè)計(jì)真正的分子顯像劑,直接結(jié)合內(nèi)皮細(xì)胞上上調(diào)的p-選擇素、e-選擇素、ICAM-1或VCAM-1分子。這樣的試劑已經(jīng)可用,并在體外流動(dòng)室設(shè)置以及模型體內(nèi)系統(tǒng)中進(jìn)行了測(cè)試。超聲微泡技術(shù)公司熒光標(biāo)記的靶向微泡在非心臟病血管的應(yīng)用。
***的診斷是在選擇合適的***方法之前確定和分析疾病部位的初始階段以及區(qū)分各種類(lèi)型的病理病變,特別是***性疾病。診斷通常在成像技術(shù)的幫助下實(shí)現(xiàn),成像技術(shù)使研究人員能夠更好地了解和可視化***斑塊及其進(jìn)展。然而,成像方法有時(shí)無(wú)法準(zhǔn)確分析易損斑塊,因此研究人員使用特異性靶向超聲微泡開(kāi)發(fā)心肌梗死。有幾種靶向***的分子靶標(biāo),包括細(xì)胞間粘附分子(ICAM-1)、血管細(xì)胞粘附分子1 (VCAM-1)、選擇素、氧化脂質(zhì)、薄纖維帽和血管平滑肌細(xì)胞(VSMCs)。例如,p -選擇素在幾種心血管疾病和損傷的血管內(nèi)皮中表達(dá),CD81是***斑塊形成的初始階段標(biāo)志物。除了常見(jiàn)的靶點(diǎn)外,還有許多***的分子靶點(diǎn),目前仍很少被使用和探索。這些分子靶點(diǎn)可用于增強(qiáng)超聲微泡的主動(dòng)靶向傳遞,擴(kuò)大***診斷和***的可能性。為了獲得成功的MNB靶向,需要進(jìn)行表面修飾以附著特定的配體或抗體。針對(duì)心肌梗死的靶向超聲微泡必須基于受體與配體之間的強(qiáng)親和力,通過(guò)鼻內(nèi)注射和超聲應(yīng)用,可以在計(jì)算機(jī)屏幕上清楚地觀察到生成的圖像。
超聲聯(lián)合納米微泡進(jìn)行核酸輸送超聲聯(lián)合納米微泡進(jìn)行DNA傳遞。不考慮超聲穿孔現(xiàn)象,建議采用US與帶核酸的微泡相互作用來(lái)提高傳輸效率。這種策略也可能有助于遺傳物質(zhì)的位點(diǎn)特異性釋放,從而減少非共振組織轉(zhuǎn)染。通過(guò)納米微泡轉(zhuǎn)移基因已經(jīng)采用了幾種技術(shù),從基因的并發(fā)管理到納米泡系統(tǒng)內(nèi)的內(nèi)涵。有多種方法,包括利用陽(yáng)離子脂質(zhì)組成納米氣泡的外殼用于DNA的靜電附著,在制備過(guò)程中直接將DNA物理組裝在外殼中,在外殼上應(yīng)用陽(yáng)離子聚合物層用于DNA的靜電相互作用,攜帶DNA的納米微泡載體的共價(jià)結(jié)合以及利用兼容的DNA鏈建立納米微泡。分析發(fā)現(xiàn),在體外,基于脂質(zhì)的納米微泡比基于白蛋白的納米微泡引起幾次基因轉(zhuǎn)染。此外,在小鼠肝臟中也觀察到脂基納米微泡的主要基因轉(zhuǎn)移。亞微米大小的氣泡與傳統(tǒng)的手持式超聲檢測(cè)儀器相結(jié)合,已被證明是一種高效的基因轉(zhuǎn)移試劑。亞微米尺度的氣泡被開(kāi)發(fā)并建議作為一種有前景的基因傳遞方法。微泡空化時(shí)細(xì)胞膜和血管通透性的變化。
組織中的微泡檢測(cè)可以利用超聲介導(dǎo)的微泡破壞。超聲壓力通常以機(jī)械指數(shù)(MI)的形式出現(xiàn)在醫(yī)學(xué)成像系統(tǒng)的屏幕上,一個(gè)相對(duì)商,計(jì)算為峰值負(fù)聲壓除以頻率的平方根。非線性微泡行為一般在聲壓較高時(shí)表現(xiàn)得更明顯(例如MI 0.2)。在某些系統(tǒng)中,它可能是檢測(cè)到的***機(jī)會(huì),例如,較小的微泡。在更高的壓力下(MI 0.4和高達(dá)1-1.9,取決于頻率),微泡被破壞,它們的聲學(xué)后向散射信號(hào)完全消失,這可以提供額外的證據(jù),證明目標(biāo)造影劑存在于組織中。一些氣泡殼(通常是那些涂有薄脂質(zhì)單層的)是柔韌性的,即使在低壓超聲(例如MI 0.06)下也會(huì)振動(dòng)。對(duì)于厚殼聚合物氣泡,除非達(dá)到臨界壓力并且外殼破裂,否則微泡不會(huì)振動(dòng),并且聲回波響應(yīng)仍然很低。對(duì)于殼較厚的氣泡,從氣泡中產(chǎn)生回聲的臨界聲能更高。因?yàn)榧{米微泡的尺寸小于1μm;因此,它們可以通過(guò)EPR效應(yīng)滲透到血管壁并積聚在斑塊內(nèi)。浙江超聲微泡小動(dòng)物
超聲造影劑在體外和體內(nèi)均顯示出良好的結(jié)合效率。四川紅色熒光超聲微泡
目前,有3家微泡廠家生產(chǎn)的產(chǎn)品可用于心臟病學(xué)應(yīng)用,分別是Optison(GE Healthcare,Milwaukee,WI,),Definity(Lantheus Medical Imaging,Billerica,MA,E)和SonoVue(BraccoSpA,Milano,Italy)。這些試劑中的微泡大于1um,有效成像持續(xù)時(shí)間小于10分鐘。南京星葉生物公司研發(fā)的超聲微泡造影劑是有脂質(zhì)外殼包裹全氟丙烷惰性氣體組成,平均尺寸約為500-700nm,比商品化微泡的粒徑小得多。小尺寸分布防止微泡被困在肺***床中,從而允許長(zhǎng)時(shí)間的體內(nèi)成像。納米微泡成像持續(xù)時(shí)間長(zhǎng)達(dá)20分鐘,而聲諾維的成像持續(xù)時(shí)間小于6min。四川紅色熒光超聲微泡